Cargando…
CpG Transformer for imputation of single-cell methylomes
MOTIVATION: The adoption of current single-cell DNA methylation sequencing protocols is hindered by incomplete coverage, outlining the need for effective imputation techniques. The task of imputing single-cell (methylation) data requires models to build an understanding of underlying biological proc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756163/ https://www.ncbi.nlm.nih.gov/pubmed/34718418 http://dx.doi.org/10.1093/bioinformatics/btab746 |
Sumario: | MOTIVATION: The adoption of current single-cell DNA methylation sequencing protocols is hindered by incomplete coverage, outlining the need for effective imputation techniques. The task of imputing single-cell (methylation) data requires models to build an understanding of underlying biological processes. RESULTS: We adapt the transformer neural network architecture to operate on methylation matrices through combining axial attention with sliding window self-attention. The obtained CpG Transformer displays state-of-the-art performances on a wide range of scBS-seq and scRRBS-seq datasets. Furthermore, we demonstrate the interpretability of CpG Transformer and illustrate its rapid transfer learning properties, allowing practitioners to train models on new datasets with a limited computational and time budget. AVAILABILITY AND IMPLEMENTATION: CpG Transformer is freely available at https://github.com/gdewael/cpg-transformer. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
---|