Cargando…

CpG Transformer for imputation of single-cell methylomes

MOTIVATION: The adoption of current single-cell DNA methylation sequencing protocols is hindered by incomplete coverage, outlining the need for effective imputation techniques. The task of imputing single-cell (methylation) data requires models to build an understanding of underlying biological proc...

Descripción completa

Detalles Bibliográficos
Autores principales: De Waele, Gaetan, Clauwaert, Jim, Menschaert, Gerben, Waegeman, Willem
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756163/
https://www.ncbi.nlm.nih.gov/pubmed/34718418
http://dx.doi.org/10.1093/bioinformatics/btab746
Descripción
Sumario:MOTIVATION: The adoption of current single-cell DNA methylation sequencing protocols is hindered by incomplete coverage, outlining the need for effective imputation techniques. The task of imputing single-cell (methylation) data requires models to build an understanding of underlying biological processes. RESULTS: We adapt the transformer neural network architecture to operate on methylation matrices through combining axial attention with sliding window self-attention. The obtained CpG Transformer displays state-of-the-art performances on a wide range of scBS-seq and scRRBS-seq datasets. Furthermore, we demonstrate the interpretability of CpG Transformer and illustrate its rapid transfer learning properties, allowing practitioners to train models on new datasets with a limited computational and time budget. AVAILABILITY AND IMPLEMENTATION: CpG Transformer is freely available at https://github.com/gdewael/cpg-transformer. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.