Cargando…
DeepTrio: a ternary prediction system for protein–protein interaction using mask multiple parallel convolutional neural networks
MOTIVATION: Protein–protein interaction (PPI), as a relative property, is determined by two binding proteins, which brings a great challenge to design an expert model with an unbiased learning architecture and a superior generalization performance. Additionally, few efforts have been made to allow P...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756175/ https://www.ncbi.nlm.nih.gov/pubmed/34694333 http://dx.doi.org/10.1093/bioinformatics/btab737 |
Sumario: | MOTIVATION: Protein–protein interaction (PPI), as a relative property, is determined by two binding proteins, which brings a great challenge to design an expert model with an unbiased learning architecture and a superior generalization performance. Additionally, few efforts have been made to allow PPI predictors to discriminate between relative properties and intrinsic properties. RESULTS: We present a sequence-based approach, DeepTrio, for PPI prediction using mask multiple parallel convolutional neural networks. Experimental evaluations show that DeepTrio achieves a better performance over several state-of-the-art methods in terms of various quality metrics. Besides, DeepTrio is extended to provide additional insights into the contribution of each input neuron to the prediction results. AVAILABILITY AND IMPLEMENTATION: We provide an online application at http://bis.zju.edu.cn/deeptrio. The DeepTrio models and training data are deposited at https://github.com/huxiaoti/deeptrio.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
---|