Cargando…
Adversarial generation of gene expression data
MOTIVATION: High-throughput gene expression can be used to address a wide range of fundamental biological problems, but datasets of an appropriate size are often unavailable. Moreover, existing transcriptomics simulators have been criticized because they fail to emulate key properties of gene expres...
Autores principales: | Viñas, Ramon, Andrés-Terré, Helena, Liò, Pietro, Bryson, Kevin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756177/ https://www.ncbi.nlm.nih.gov/pubmed/33471074 http://dx.doi.org/10.1093/bioinformatics/btab035 |
Ejemplares similares
-
Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases
por: Scherer, Paul, et al.
Publicado: (2021) -
Unsupervised generative and graph representation learning for modelling cell differentiation
por: Bica, Ioana, et al.
Publicado: (2020) -
CellVGAE: an unsupervised scRNA-seq analysis workflow with graph attention networks
por: Buterez, David, et al.
Publicado: (2021) -
A novel interpretable machine learning algorithm to identify optimal parameter space for cancer growth
por: Coggan, Helena, et al.
Publicado: (2022) -
Deep Learning Enables Fast and Accurate Imputation of Gene Expression
por: Viñas, Ramon, et al.
Publicado: (2021)