Cargando…
Multi-instance learning of graph neural networks for aqueous pK(a) prediction
MOTIVATION: The acid dissociation constant (pK(a)) is a critical parameter to reflect the ionization ability of chemical compounds and is widely applied in a variety of industries. However, the experimental determination of pK(a) is intricate and time-consuming, especially for the exact determinatio...
Autores principales: | Xiong, Jiacheng, Li, Zhaojun, Wang, Guangchao, Fu, Zunyun, Zhong, Feisheng, Xu, Tingyang, Liu, Xiaomeng, Huang, Ziming, Liu, Xiaohong, Chen, Kaixian, Jiang, Hualiang, Zheng, Mingyue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756178/ https://www.ncbi.nlm.nih.gov/pubmed/34643666 http://dx.doi.org/10.1093/bioinformatics/btab714 |
Ejemplares similares
-
An inductive graph neural network model for compound–protein interaction prediction based on a homogeneous graph
por: Wan, Xiaozhe, et al.
Publicado: (2022) -
Drug target inference by mining transcriptional data using a novel graph convolutional network framework
por: Zhong, Feisheng, et al.
Publicado: (2021) -
MolFilterGAN: a progressively augmented generative adversarial network for triaging AI-designed molecules
por: Liu, Xiaohong, et al.
Publicado: (2023) -
DrugSpaceX: a large screenable and synthetically tractable database extending drug space
por: Yang, Tianbiao, et al.
Publicado: (2020) -
Drug repurposing against breast cancer by integrating drug-exposure expression profiles and drug–drug links based on graph neural network
por: Cui, Chen, et al.
Publicado: (2021)