Cargando…

BalLeRMix +: mixture model approaches for robust joint identification of both positive selection and long-term balancing selection

SUMMARY: The growing availability of genomewide polymorphism data has fueled interest in detecting diverse selective processes affecting population diversity. However, no model-based approaches exist to jointly detect and distinguish the two complementary processes of balancing and positive selectio...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Xiaoheng, DeGiorgio, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756184/
https://www.ncbi.nlm.nih.gov/pubmed/34664624
http://dx.doi.org/10.1093/bioinformatics/btab720
Descripción
Sumario:SUMMARY: The growing availability of genomewide polymorphism data has fueled interest in detecting diverse selective processes affecting population diversity. However, no model-based approaches exist to jointly detect and distinguish the two complementary processes of balancing and positive selection. We extend the BalLeRMix  B-statistic framework described in Cheng and DeGiorgio (2020) for detecting balancing selection and present BalLeRMix+, which implements five B statistic extensions based on mixture models to robustly identify both types of selection. BalLeRMix+ is implemented in Python and computes the composite likelihood ratios and associated model parameters for each genomic test position. AVAILABILITY AND IMPLEMENTATION: BalLeRMix+ is freely available at https://github.com/bioXiaoheng/BallerMixPlus. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.