Cargando…
Utility of using electrocardiogram measures of heart rate variability as a measure of cardiovascular autonomic neuropathy in type 1 diabetes patients
AIMS/INTRODUCTION: Cardiovascular autonomic neuropathy (CAN) is a predictor of cardiovascular disease and mortality. Cardiovascular reflex tests (CARTs) are the gold standard for the diagnosis of CAN, but might not be feasible in large research cohorts or in clinical care. We investigated whether me...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756321/ https://www.ncbi.nlm.nih.gov/pubmed/34309223 http://dx.doi.org/10.1111/jdi.13635 |
_version_ | 1784632546944876544 |
---|---|
author | Pop‐Busui, Rodica Backlund, Jye‐Yu C Bebu, Ionut Braffett, Barbara H Lorenzi, Gayle White, Neil H Lachin, John M Soliman, Elsayed Z |
author_facet | Pop‐Busui, Rodica Backlund, Jye‐Yu C Bebu, Ionut Braffett, Barbara H Lorenzi, Gayle White, Neil H Lachin, John M Soliman, Elsayed Z |
author_sort | Pop‐Busui, Rodica |
collection | PubMed |
description | AIMS/INTRODUCTION: Cardiovascular autonomic neuropathy (CAN) is a predictor of cardiovascular disease and mortality. Cardiovascular reflex tests (CARTs) are the gold standard for the diagnosis of CAN, but might not be feasible in large research cohorts or in clinical care. We investigated whether measures of heart rate variability obtained from standard electrocardiogram (ECG) recordings provide a reliable measure of CAN. MATERIALS AND METHODS: Standardized CARTs (R‐R response to paced breathing, Valsalva, postural changes) and digitized 12‐lead resting ECGs were obtained concomitantly in Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications participants (n = 311). Standard deviation of normally conducted R‐R intervals (SDNN) and the root mean square of successive differences between normal‐to‐normal R‐R intervals (rMSSD) were measured from ECG. Sensitivity, specificity, probability of correct classification and Kappa statistics evaluated the agreement between ECG‐derived CAN and CARTs‐defined CAN. RESULTS: Participants with CARTs‐defined CAN had significantly lower SDNN and rMSSD compared with those without CAN (P < 0.001). The optimal cut‐off points of ECG‐derived CAN were <17.13 and <24.94 ms for SDNN and rMSSD, respectively. SDNN plays a dominant role in defining CAN, with an area under the curve of 0.73, indicating fair test performance. The Kappa statistic for SDNN was 0.41 (95% confidence interval 0.30–0.51) for the optimal cut‐off point, showing fair agreement with CARTs‐defined CAN. Combining SDNN and rMSSD optimal cut‐off points does not provide additional predictive power for CAN. CONCLUSIONS: These analyses are the first to show the agreement between indices of heart rate variability derived from ECGs and the gold standard CARTs, thus supporting potential use as a measure of CAN in clinical research and clinical care. |
format | Online Article Text |
id | pubmed-8756321 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-87563212022-01-19 Utility of using electrocardiogram measures of heart rate variability as a measure of cardiovascular autonomic neuropathy in type 1 diabetes patients Pop‐Busui, Rodica Backlund, Jye‐Yu C Bebu, Ionut Braffett, Barbara H Lorenzi, Gayle White, Neil H Lachin, John M Soliman, Elsayed Z J Diabetes Investig Articles AIMS/INTRODUCTION: Cardiovascular autonomic neuropathy (CAN) is a predictor of cardiovascular disease and mortality. Cardiovascular reflex tests (CARTs) are the gold standard for the diagnosis of CAN, but might not be feasible in large research cohorts or in clinical care. We investigated whether measures of heart rate variability obtained from standard electrocardiogram (ECG) recordings provide a reliable measure of CAN. MATERIALS AND METHODS: Standardized CARTs (R‐R response to paced breathing, Valsalva, postural changes) and digitized 12‐lead resting ECGs were obtained concomitantly in Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications participants (n = 311). Standard deviation of normally conducted R‐R intervals (SDNN) and the root mean square of successive differences between normal‐to‐normal R‐R intervals (rMSSD) were measured from ECG. Sensitivity, specificity, probability of correct classification and Kappa statistics evaluated the agreement between ECG‐derived CAN and CARTs‐defined CAN. RESULTS: Participants with CARTs‐defined CAN had significantly lower SDNN and rMSSD compared with those without CAN (P < 0.001). The optimal cut‐off points of ECG‐derived CAN were <17.13 and <24.94 ms for SDNN and rMSSD, respectively. SDNN plays a dominant role in defining CAN, with an area under the curve of 0.73, indicating fair test performance. The Kappa statistic for SDNN was 0.41 (95% confidence interval 0.30–0.51) for the optimal cut‐off point, showing fair agreement with CARTs‐defined CAN. Combining SDNN and rMSSD optimal cut‐off points does not provide additional predictive power for CAN. CONCLUSIONS: These analyses are the first to show the agreement between indices of heart rate variability derived from ECGs and the gold standard CARTs, thus supporting potential use as a measure of CAN in clinical research and clinical care. John Wiley and Sons Inc. 2021-08-14 2022-01 /pmc/articles/PMC8756321/ /pubmed/34309223 http://dx.doi.org/10.1111/jdi.13635 Text en © 2021 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Articles Pop‐Busui, Rodica Backlund, Jye‐Yu C Bebu, Ionut Braffett, Barbara H Lorenzi, Gayle White, Neil H Lachin, John M Soliman, Elsayed Z Utility of using electrocardiogram measures of heart rate variability as a measure of cardiovascular autonomic neuropathy in type 1 diabetes patients |
title | Utility of using electrocardiogram measures of heart rate variability as a measure of cardiovascular autonomic neuropathy in type 1 diabetes patients |
title_full | Utility of using electrocardiogram measures of heart rate variability as a measure of cardiovascular autonomic neuropathy in type 1 diabetes patients |
title_fullStr | Utility of using electrocardiogram measures of heart rate variability as a measure of cardiovascular autonomic neuropathy in type 1 diabetes patients |
title_full_unstemmed | Utility of using electrocardiogram measures of heart rate variability as a measure of cardiovascular autonomic neuropathy in type 1 diabetes patients |
title_short | Utility of using electrocardiogram measures of heart rate variability as a measure of cardiovascular autonomic neuropathy in type 1 diabetes patients |
title_sort | utility of using electrocardiogram measures of heart rate variability as a measure of cardiovascular autonomic neuropathy in type 1 diabetes patients |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756321/ https://www.ncbi.nlm.nih.gov/pubmed/34309223 http://dx.doi.org/10.1111/jdi.13635 |
work_keys_str_mv | AT popbusuirodica utilityofusingelectrocardiogrammeasuresofheartratevariabilityasameasureofcardiovascularautonomicneuropathyintype1diabetespatients AT backlundjyeyuc utilityofusingelectrocardiogrammeasuresofheartratevariabilityasameasureofcardiovascularautonomicneuropathyintype1diabetespatients AT bebuionut utilityofusingelectrocardiogrammeasuresofheartratevariabilityasameasureofcardiovascularautonomicneuropathyintype1diabetespatients AT braffettbarbarah utilityofusingelectrocardiogrammeasuresofheartratevariabilityasameasureofcardiovascularautonomicneuropathyintype1diabetespatients AT lorenzigayle utilityofusingelectrocardiogrammeasuresofheartratevariabilityasameasureofcardiovascularautonomicneuropathyintype1diabetespatients AT whiteneilh utilityofusingelectrocardiogrammeasuresofheartratevariabilityasameasureofcardiovascularautonomicneuropathyintype1diabetespatients AT lachinjohnm utilityofusingelectrocardiogrammeasuresofheartratevariabilityasameasureofcardiovascularautonomicneuropathyintype1diabetespatients AT solimanelsayedz utilityofusingelectrocardiogrammeasuresofheartratevariabilityasameasureofcardiovascularautonomicneuropathyintype1diabetespatients AT utilityofusingelectrocardiogrammeasuresofheartratevariabilityasameasureofcardiovascularautonomicneuropathyintype1diabetespatients |