Cargando…

A line through the brain: implementation of human line-scanning at 7T for ultra-high spatiotemporal resolution fMRI

Functional magnetic resonance imaging (fMRI) is a widely used tool in neuroscience to detect neurally evoked responses, e.g. the blood oxygenation level-dependent (BOLD) signal. Typically, BOLD fMRI has millimeter spatial resolution and temporal resolution of one to few seconds. To study the sub-mil...

Descripción completa

Detalles Bibliográficos
Autores principales: Raimondo, Luisa, Knapen, Tomas, Oliveira, ĺcaro A.F, Yu, Xin, Dumoulin, Serge O, van der Zwaag, Wietske, Siero, Jeroen C.W
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756483/
https://www.ncbi.nlm.nih.gov/pubmed/34415208
http://dx.doi.org/10.1177/0271678X211037266
_version_ 1784632571664007168
author Raimondo, Luisa
Knapen, Tomas
Oliveira, ĺcaro A.F
Yu, Xin
Dumoulin, Serge O
van der Zwaag, Wietske
Siero, Jeroen C.W
author_facet Raimondo, Luisa
Knapen, Tomas
Oliveira, ĺcaro A.F
Yu, Xin
Dumoulin, Serge O
van der Zwaag, Wietske
Siero, Jeroen C.W
author_sort Raimondo, Luisa
collection PubMed
description Functional magnetic resonance imaging (fMRI) is a widely used tool in neuroscience to detect neurally evoked responses, e.g. the blood oxygenation level-dependent (BOLD) signal. Typically, BOLD fMRI has millimeter spatial resolution and temporal resolution of one to few seconds. To study the sub-millimeter structures and activity of the cortical gray matter, the field needs an fMRI method with high spatial and temporal resolution. Line-scanning fMRI achieves very high spatial resolution and high sampling rate, at the cost of a sacrifice in volume coverage. Here, we present a human line-scanning implementation on a 7T MRI system. First, we investigate the quality of the saturation pulses that suppress MR signal outside the line. Second, we established the best coil combination for reconstruction. Finally, we applied the line-scanning method in the occipital lobe during a visual stimulation task, showing BOLD responses along cortical depth, every 250 µm with a 200 ms repetition time (TR). We found a good correspondence of t-statistics values with 2D gradient-echo echo planar imaging (GE-EPI) BOLD fMRI data with the same temporal resolution and voxel volume (R = 0.6 ± 0.2). In summary, we demonstrate the feasibility of line-scanning in humans and this opens line-scanning fMRI for applications in cognitive and clinical neuroscience.
format Online
Article
Text
id pubmed-8756483
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-87564832022-02-05 A line through the brain: implementation of human line-scanning at 7T for ultra-high spatiotemporal resolution fMRI Raimondo, Luisa Knapen, Tomas Oliveira, ĺcaro A.F Yu, Xin Dumoulin, Serge O van der Zwaag, Wietske Siero, Jeroen C.W J Cereb Blood Flow Metab Rapid Communications Functional magnetic resonance imaging (fMRI) is a widely used tool in neuroscience to detect neurally evoked responses, e.g. the blood oxygenation level-dependent (BOLD) signal. Typically, BOLD fMRI has millimeter spatial resolution and temporal resolution of one to few seconds. To study the sub-millimeter structures and activity of the cortical gray matter, the field needs an fMRI method with high spatial and temporal resolution. Line-scanning fMRI achieves very high spatial resolution and high sampling rate, at the cost of a sacrifice in volume coverage. Here, we present a human line-scanning implementation on a 7T MRI system. First, we investigate the quality of the saturation pulses that suppress MR signal outside the line. Second, we established the best coil combination for reconstruction. Finally, we applied the line-scanning method in the occipital lobe during a visual stimulation task, showing BOLD responses along cortical depth, every 250 µm with a 200 ms repetition time (TR). We found a good correspondence of t-statistics values with 2D gradient-echo echo planar imaging (GE-EPI) BOLD fMRI data with the same temporal resolution and voxel volume (R = 0.6 ± 0.2). In summary, we demonstrate the feasibility of line-scanning in humans and this opens line-scanning fMRI for applications in cognitive and clinical neuroscience. SAGE Publications 2021-08-20 2021-11 /pmc/articles/PMC8756483/ /pubmed/34415208 http://dx.doi.org/10.1177/0271678X211037266 Text en © The Author(s) 2021
spellingShingle Rapid Communications
Raimondo, Luisa
Knapen, Tomas
Oliveira, ĺcaro A.F
Yu, Xin
Dumoulin, Serge O
van der Zwaag, Wietske
Siero, Jeroen C.W
A line through the brain: implementation of human line-scanning at 7T for ultra-high spatiotemporal resolution fMRI
title A line through the brain: implementation of human line-scanning at 7T for ultra-high spatiotemporal resolution fMRI
title_full A line through the brain: implementation of human line-scanning at 7T for ultra-high spatiotemporal resolution fMRI
title_fullStr A line through the brain: implementation of human line-scanning at 7T for ultra-high spatiotemporal resolution fMRI
title_full_unstemmed A line through the brain: implementation of human line-scanning at 7T for ultra-high spatiotemporal resolution fMRI
title_short A line through the brain: implementation of human line-scanning at 7T for ultra-high spatiotemporal resolution fMRI
title_sort line through the brain: implementation of human line-scanning at 7t for ultra-high spatiotemporal resolution fmri
topic Rapid Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756483/
https://www.ncbi.nlm.nih.gov/pubmed/34415208
http://dx.doi.org/10.1177/0271678X211037266
work_keys_str_mv AT raimondoluisa alinethroughthebrainimplementationofhumanlinescanningat7tforultrahighspatiotemporalresolutionfmri
AT knapentomas alinethroughthebrainimplementationofhumanlinescanningat7tforultrahighspatiotemporalresolutionfmri
AT oliveiralcaroaf alinethroughthebrainimplementationofhumanlinescanningat7tforultrahighspatiotemporalresolutionfmri
AT yuxin alinethroughthebrainimplementationofhumanlinescanningat7tforultrahighspatiotemporalresolutionfmri
AT dumoulinsergeo alinethroughthebrainimplementationofhumanlinescanningat7tforultrahighspatiotemporalresolutionfmri
AT vanderzwaagwietske alinethroughthebrainimplementationofhumanlinescanningat7tforultrahighspatiotemporalresolutionfmri
AT sierojeroencw alinethroughthebrainimplementationofhumanlinescanningat7tforultrahighspatiotemporalresolutionfmri
AT raimondoluisa linethroughthebrainimplementationofhumanlinescanningat7tforultrahighspatiotemporalresolutionfmri
AT knapentomas linethroughthebrainimplementationofhumanlinescanningat7tforultrahighspatiotemporalresolutionfmri
AT oliveiralcaroaf linethroughthebrainimplementationofhumanlinescanningat7tforultrahighspatiotemporalresolutionfmri
AT yuxin linethroughthebrainimplementationofhumanlinescanningat7tforultrahighspatiotemporalresolutionfmri
AT dumoulinsergeo linethroughthebrainimplementationofhumanlinescanningat7tforultrahighspatiotemporalresolutionfmri
AT vanderzwaagwietske linethroughthebrainimplementationofhumanlinescanningat7tforultrahighspatiotemporalresolutionfmri
AT sierojeroencw linethroughthebrainimplementationofhumanlinescanningat7tforultrahighspatiotemporalresolutionfmri