Cargando…
Long-read technologies identify a hidden inverted duplication in a family with choroideremia
The lack of molecular diagnoses in rare genetic diseases can be explained by limitations of current standard genomic technologies. Upcoming long-read techniques have complementary strengths to overcome these limitations, with a particular strength in identifying structural variants. By using optical...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756506/ https://www.ncbi.nlm.nih.gov/pubmed/35047838 http://dx.doi.org/10.1016/j.xhgg.2021.100046 |
_version_ | 1784632575625527296 |
---|---|
author | Fadaie, Zeinab Neveling, Kornelia Mantere, Tuomo Derks, Ronny Haer-Wigman, Lonneke den Ouden, Amber Kwint, Michael O’Gorman, Luke Valkenburg, Dyon Hoyng, Carel B. Gilissen, Christian Vissers, Lisenka E.L.M. Nelen, Marcel Cremers, Frans P.M. Hoischen, Alexander Roosing, Susanne |
author_facet | Fadaie, Zeinab Neveling, Kornelia Mantere, Tuomo Derks, Ronny Haer-Wigman, Lonneke den Ouden, Amber Kwint, Michael O’Gorman, Luke Valkenburg, Dyon Hoyng, Carel B. Gilissen, Christian Vissers, Lisenka E.L.M. Nelen, Marcel Cremers, Frans P.M. Hoischen, Alexander Roosing, Susanne |
author_sort | Fadaie, Zeinab |
collection | PubMed |
description | The lack of molecular diagnoses in rare genetic diseases can be explained by limitations of current standard genomic technologies. Upcoming long-read techniques have complementary strengths to overcome these limitations, with a particular strength in identifying structural variants. By using optical genome mapping and long-read sequencing, we aimed to identify the pathogenic variant in a large family with X-linked choroideremia. In this family, aberrant splicing of exon 12 of the choroideremia gene CHM was detected in 2003, but the underlying genomic defect remained elusive. Optical genome mapping and long-read sequencing approaches now revealed an intragenic 1,752 bp inverted duplication including exon 12 and surrounding regions, located downstream of the wild-type copy of exon 12. Both breakpoint junctions were confirmed with Sanger sequencing and segregate with the X-linked inheritance in the family. The breakpoint junctions displayed sequence microhomology suggestive for an erroneous replication mechanism as the origin of the structural variant. The inverted duplication is predicted to result in a hairpin formation of the pre-mRNA with the wild-type exon 12, leading to exon skipping in the mature mRNA. The identified inverted duplication is deemed the hidden pathogenic cause of disease in this family. Our study shows that optical genome mapping and long-read sequencing have significant potential for the identification of (hidden) structural variants in rare genetic diseases. |
format | Online Article Text |
id | pubmed-8756506 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-87565062022-01-18 Long-read technologies identify a hidden inverted duplication in a family with choroideremia Fadaie, Zeinab Neveling, Kornelia Mantere, Tuomo Derks, Ronny Haer-Wigman, Lonneke den Ouden, Amber Kwint, Michael O’Gorman, Luke Valkenburg, Dyon Hoyng, Carel B. Gilissen, Christian Vissers, Lisenka E.L.M. Nelen, Marcel Cremers, Frans P.M. Hoischen, Alexander Roosing, Susanne HGG Adv Article The lack of molecular diagnoses in rare genetic diseases can be explained by limitations of current standard genomic technologies. Upcoming long-read techniques have complementary strengths to overcome these limitations, with a particular strength in identifying structural variants. By using optical genome mapping and long-read sequencing, we aimed to identify the pathogenic variant in a large family with X-linked choroideremia. In this family, aberrant splicing of exon 12 of the choroideremia gene CHM was detected in 2003, but the underlying genomic defect remained elusive. Optical genome mapping and long-read sequencing approaches now revealed an intragenic 1,752 bp inverted duplication including exon 12 and surrounding regions, located downstream of the wild-type copy of exon 12. Both breakpoint junctions were confirmed with Sanger sequencing and segregate with the X-linked inheritance in the family. The breakpoint junctions displayed sequence microhomology suggestive for an erroneous replication mechanism as the origin of the structural variant. The inverted duplication is predicted to result in a hairpin formation of the pre-mRNA with the wild-type exon 12, leading to exon skipping in the mature mRNA. The identified inverted duplication is deemed the hidden pathogenic cause of disease in this family. Our study shows that optical genome mapping and long-read sequencing have significant potential for the identification of (hidden) structural variants in rare genetic diseases. Elsevier 2021-07-20 /pmc/articles/PMC8756506/ /pubmed/35047838 http://dx.doi.org/10.1016/j.xhgg.2021.100046 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Fadaie, Zeinab Neveling, Kornelia Mantere, Tuomo Derks, Ronny Haer-Wigman, Lonneke den Ouden, Amber Kwint, Michael O’Gorman, Luke Valkenburg, Dyon Hoyng, Carel B. Gilissen, Christian Vissers, Lisenka E.L.M. Nelen, Marcel Cremers, Frans P.M. Hoischen, Alexander Roosing, Susanne Long-read technologies identify a hidden inverted duplication in a family with choroideremia |
title | Long-read technologies identify a hidden inverted duplication in a family with choroideremia |
title_full | Long-read technologies identify a hidden inverted duplication in a family with choroideremia |
title_fullStr | Long-read technologies identify a hidden inverted duplication in a family with choroideremia |
title_full_unstemmed | Long-read technologies identify a hidden inverted duplication in a family with choroideremia |
title_short | Long-read technologies identify a hidden inverted duplication in a family with choroideremia |
title_sort | long-read technologies identify a hidden inverted duplication in a family with choroideremia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756506/ https://www.ncbi.nlm.nih.gov/pubmed/35047838 http://dx.doi.org/10.1016/j.xhgg.2021.100046 |
work_keys_str_mv | AT fadaiezeinab longreadtechnologiesidentifyahiddeninvertedduplicationinafamilywithchoroideremia AT nevelingkornelia longreadtechnologiesidentifyahiddeninvertedduplicationinafamilywithchoroideremia AT manteretuomo longreadtechnologiesidentifyahiddeninvertedduplicationinafamilywithchoroideremia AT derksronny longreadtechnologiesidentifyahiddeninvertedduplicationinafamilywithchoroideremia AT haerwigmanlonneke longreadtechnologiesidentifyahiddeninvertedduplicationinafamilywithchoroideremia AT denoudenamber longreadtechnologiesidentifyahiddeninvertedduplicationinafamilywithchoroideremia AT kwintmichael longreadtechnologiesidentifyahiddeninvertedduplicationinafamilywithchoroideremia AT ogormanluke longreadtechnologiesidentifyahiddeninvertedduplicationinafamilywithchoroideremia AT valkenburgdyon longreadtechnologiesidentifyahiddeninvertedduplicationinafamilywithchoroideremia AT hoyngcarelb longreadtechnologiesidentifyahiddeninvertedduplicationinafamilywithchoroideremia AT gilissenchristian longreadtechnologiesidentifyahiddeninvertedduplicationinafamilywithchoroideremia AT visserslisenkaelm longreadtechnologiesidentifyahiddeninvertedduplicationinafamilywithchoroideremia AT nelenmarcel longreadtechnologiesidentifyahiddeninvertedduplicationinafamilywithchoroideremia AT cremersfranspm longreadtechnologiesidentifyahiddeninvertedduplicationinafamilywithchoroideremia AT hoischenalexander longreadtechnologiesidentifyahiddeninvertedduplicationinafamilywithchoroideremia AT roosingsusanne longreadtechnologiesidentifyahiddeninvertedduplicationinafamilywithchoroideremia |