Cargando…

Sensing pedestrian flows for real-time assessment of non-pharmaceutical policy interventions during the COVID-19 pandemic

INTRODUCTION: To combat and mitigate the transmission of the SARS-CoV-2 virus, reducing the number of social contacts within a population is highly effective. Non-pharmaceutical policy interventions, e.g. stay-at-home orders, closing schools, universities, and (non-essential) businesses, are expecte...

Descripción completa

Detalles Bibliográficos
Autores principales: Klingwort, Jonas, De Broe, Sofie MMG, Brocker, Sven A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Swansea University 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756557/
https://www.ncbi.nlm.nih.gov/pubmed/35097223
http://dx.doi.org/10.23889/ijpds.v5i4.1688
_version_ 1784632582463291392
author Klingwort, Jonas
De Broe, Sofie MMG
Brocker, Sven A.
author_facet Klingwort, Jonas
De Broe, Sofie MMG
Brocker, Sven A.
author_sort Klingwort, Jonas
collection PubMed
description INTRODUCTION: To combat and mitigate the transmission of the SARS-CoV-2 virus, reducing the number of social contacts within a population is highly effective. Non-pharmaceutical policy interventions, e.g. stay-at-home orders, closing schools, universities, and (non-essential) businesses, are expected to decrease pedestrian flows in public areas, leading to reduced social contacts. The extent to which such interventions show the targeted effect is often measured retrospectively by surveying behavioural changes. Approaches that use data generated through mobile phones are hindered by data confidentiality and privacy regulations and complicated by selection effects. Furthermore, access to such sensitive data is limited. However, a complex pandemic situation requires a fast evaluation of the effectiveness of the introduced interventions aiming to reduce social contacts. Location-based sensor systems installed in cities, providing objective measurements of spatial mobility in the form of pedestrian flows, are suited for such a purpose. These devices record changes in a population’s behaviour in real-time, do not have privacy problems as they do not identify persons, and have no selection problems due to ownership of a device. OBJECTIVE: This work aimed to analyse location-based sensor measurements of pedestrian flows in 49 metropolitan areas at 100 locations in Germany to study whether such technology is suitable for the real-time assessment of behavioural changes during a phase of several different pandemic-related policy interventions. METHODS: Spatial mobility data of pedestrian flows was linked with policy interventions using the date as a unique linkage key. Data was visualised to observe potential changes in pedestrian flows before or after interventions. Furthermore, differences in time series of pedestrian counts between the pandemic and the pre-pandemic year were analysed. RESULTS: The sensors detected changes in mobility patterns even before policy interventions were enacted. Compared to the pre-pandemic year, pedestrian counts were 85% lower. CONCLUSIONS: The study illustrated the practical value of sensor-based real-time measurements when linked with non-pharmaceutical policy intervention data. This study’s core contribution is that the sensors detected behavioural changes before enacting or loosening non-pharmaceutical policy interventions. Therefore, such technologies should be considered in the future by policymakers for crisis management and policy evaluation.
format Online
Article
Text
id pubmed-8756557
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Swansea University
record_format MEDLINE/PubMed
spelling pubmed-87565572022-01-27 Sensing pedestrian flows for real-time assessment of non-pharmaceutical policy interventions during the COVID-19 pandemic Klingwort, Jonas De Broe, Sofie MMG Brocker, Sven A. Int J Popul Data Sci Population Data Science INTRODUCTION: To combat and mitigate the transmission of the SARS-CoV-2 virus, reducing the number of social contacts within a population is highly effective. Non-pharmaceutical policy interventions, e.g. stay-at-home orders, closing schools, universities, and (non-essential) businesses, are expected to decrease pedestrian flows in public areas, leading to reduced social contacts. The extent to which such interventions show the targeted effect is often measured retrospectively by surveying behavioural changes. Approaches that use data generated through mobile phones are hindered by data confidentiality and privacy regulations and complicated by selection effects. Furthermore, access to such sensitive data is limited. However, a complex pandemic situation requires a fast evaluation of the effectiveness of the introduced interventions aiming to reduce social contacts. Location-based sensor systems installed in cities, providing objective measurements of spatial mobility in the form of pedestrian flows, are suited for such a purpose. These devices record changes in a population’s behaviour in real-time, do not have privacy problems as they do not identify persons, and have no selection problems due to ownership of a device. OBJECTIVE: This work aimed to analyse location-based sensor measurements of pedestrian flows in 49 metropolitan areas at 100 locations in Germany to study whether such technology is suitable for the real-time assessment of behavioural changes during a phase of several different pandemic-related policy interventions. METHODS: Spatial mobility data of pedestrian flows was linked with policy interventions using the date as a unique linkage key. Data was visualised to observe potential changes in pedestrian flows before or after interventions. Furthermore, differences in time series of pedestrian counts between the pandemic and the pre-pandemic year were analysed. RESULTS: The sensors detected changes in mobility patterns even before policy interventions were enacted. Compared to the pre-pandemic year, pedestrian counts were 85% lower. CONCLUSIONS: The study illustrated the practical value of sensor-based real-time measurements when linked with non-pharmaceutical policy intervention data. This study’s core contribution is that the sensors detected behavioural changes before enacting or loosening non-pharmaceutical policy interventions. Therefore, such technologies should be considered in the future by policymakers for crisis management and policy evaluation. Swansea University 2022-01-12 /pmc/articles/PMC8756557/ /pubmed/35097223 http://dx.doi.org/10.23889/ijpds.v5i4.1688 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
spellingShingle Population Data Science
Klingwort, Jonas
De Broe, Sofie MMG
Brocker, Sven A.
Sensing pedestrian flows for real-time assessment of non-pharmaceutical policy interventions during the COVID-19 pandemic
title Sensing pedestrian flows for real-time assessment of non-pharmaceutical policy interventions during the COVID-19 pandemic
title_full Sensing pedestrian flows for real-time assessment of non-pharmaceutical policy interventions during the COVID-19 pandemic
title_fullStr Sensing pedestrian flows for real-time assessment of non-pharmaceutical policy interventions during the COVID-19 pandemic
title_full_unstemmed Sensing pedestrian flows for real-time assessment of non-pharmaceutical policy interventions during the COVID-19 pandemic
title_short Sensing pedestrian flows for real-time assessment of non-pharmaceutical policy interventions during the COVID-19 pandemic
title_sort sensing pedestrian flows for real-time assessment of non-pharmaceutical policy interventions during the covid-19 pandemic
topic Population Data Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756557/
https://www.ncbi.nlm.nih.gov/pubmed/35097223
http://dx.doi.org/10.23889/ijpds.v5i4.1688
work_keys_str_mv AT klingwortjonas sensingpedestrianflowsforrealtimeassessmentofnonpharmaceuticalpolicyinterventionsduringthecovid19pandemic
AT debroesofiemmg sensingpedestrianflowsforrealtimeassessmentofnonpharmaceuticalpolicyinterventionsduringthecovid19pandemic
AT brockersvena sensingpedestrianflowsforrealtimeassessmentofnonpharmaceuticalpolicyinterventionsduringthecovid19pandemic