Cargando…
A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data
Here, we present a multi-modal deep generative model, the single-cell Multi-View Profiler (scMVP), which is designed for handling sequencing data that simultaneously measure gene expression and chromatin accessibility in the same cell, including SNARE-seq, sci-CAR, Paired-seq, SHARE-seq, and Multiom...
Autores principales: | Li, Gaoyang, Fu, Shaliu, Wang, Shuguang, Zhu, Chenyu, Duan, Bin, Tang, Chen, Chen, Xiaohan, Chuai, Guohui, Wang, Ping, Liu, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756637/ https://www.ncbi.nlm.nih.gov/pubmed/35022082 http://dx.doi.org/10.1186/s13059-021-02595-6 |
Ejemplares similares
-
simATAC: a single-cell ATAC-seq simulation framework
por: Navidi, Zeinab, et al.
Publicado: (2021) -
Unsupervised contrastive peak caller for ATAC-seq
por: Vu, Ha T.H., et al.
Publicado: (2023) -
HyperChIP: identification of hypervariable signals across ChIP-seq or ATAC-seq samples
por: Chen, Haojie, et al.
Publicado: (2022) -
Differential ATAC-seq and ChIP-seq peak detection using ROTS
por: Faux, Thomas, et al.
Publicado: (2021) -
Identification of transcription factor binding sites using ATAC-seq
por: Li, Zhijian, et al.
Publicado: (2019)