Cargando…
Sequentially calibrating a Bayesian microsimulation model to incorporate new information and assumptions
BACKGROUND: Microsimulation models are mathematical models that simulate event histories for individual members of a population. They are useful for policy decisions because they simulate a large number of individuals from an idealized population, with features that change over time, and the resulti...
Autores principales: | DeYoreo, Maria, Rutter, Carolyn M., Ozik, Jonathan, Collier, Nicholson |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756687/ https://www.ncbi.nlm.nih.gov/pubmed/35022005 http://dx.doi.org/10.1186/s12911-021-01726-0 |
Ejemplares similares
-
Characterization and Valuation of the Uncertainty of Calibrated Parameters in Microsimulation Decision Models
por: Alarid-Escudero, Fernando, et al.
Publicado: (2022) -
Emulator-based Bayesian calibration of the CISNET colorectal cancer models
por: Pineda-Antunez, Carlos, et al.
Publicado: (2023) -
Unequal Recovery in Colorectal Cancer Screening Following the COVID-19 Pandemic: A Comparative Microsimulation Analysis
por: de Lima, Pedro Nascimento, et al.
Publicado: (2022) -
Dynamic calibration with approximate Bayesian computation for a microsimulation of disease spread
por: Asher, Molly, et al.
Publicado: (2023) -
Robustness Analysis of Colorectal Cancer Colonoscopy Screening Strategies
por: de Lima, Pedro Nascimento, et al.
Publicado: (2023)