Cargando…
Robust, Primitive, and Unsupervised Quality Estimation for Segmentation Ensembles
A multitude of image-based machine learning segmentation and classification algorithms has recently been proposed, offering diagnostic decision support for the identification and characterization of glioma, Covid-19 and many other diseases. Even though these algorithms often outperform human experts...
Autores principales: | Kofler, Florian, Ezhov, Ivan, Fidon, Lucas, Pirkl, Carolin M., Paetzold, Johannes C., Burian, Egon, Pati, Sarthak, El Husseini, Malek, Navarro, Fernando, Shit, Suprosanna, Kirschke, Jan, Bakas, Spyridon, Zimmer, Claus, Wiestler, Benedikt, Menze, Bjoern H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8757043/ https://www.ncbi.nlm.nih.gov/pubmed/35035351 http://dx.doi.org/10.3389/fnins.2021.752780 |
Ejemplares similares
-
SRflow: Deep learning based super-resolution of 4D-flow MRI data
por: Shit, Suprosanna, et al.
Publicado: (2022) -
BraTS Toolkit: Translating BraTS Brain Tumor Segmentation Algorithms Into Clinical and Scientific Practice
por: Kofler, Florian, et al.
Publicado: (2020) -
AI-based detection of contrast-enhancing MRI lesions in patients with multiple sclerosis
por: Schlaeger, Sarah, et al.
Publicado: (2023) -
Synthetic T2-weighted fat sat based on a generative adversarial network shows potential for scan time reduction in spine imaging in a multicenter test dataset
por: Schlaeger, Sarah, et al.
Publicado: (2023) -
Implementation of GAN-Based, Synthetic T2-Weighted Fat Saturated Images in the Routine Radiological Workflow Improves Spinal Pathology Detection
por: Schlaeger, Sarah, et al.
Publicado: (2023)