Cargando…
One-Pot Preparation of Benzotriazole-Modified Porous Silica for Durable UVA Absorption Ability
[Image: see text] The durable application of poly(butylene adipate-co-terephthalate) (PBAT) under atmospheric conditions is restricted by its poor ultraviolet (UV) stability. To improve the anti-aging capacity to UV radiation of the PBAT film, we describe a straightforward and highly producible synt...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8757326/ https://www.ncbi.nlm.nih.gov/pubmed/35036774 http://dx.doi.org/10.1021/acsomega.1c05682 |
Sumario: | [Image: see text] The durable application of poly(butylene adipate-co-terephthalate) (PBAT) under atmospheric conditions is restricted by its poor ultraviolet (UV) stability. To improve the anti-aging capacity to UV radiation of the PBAT film, we describe a straightforward and highly producible synthesis of UV-resistant dendrimeric porous silica nanospheres (SiO(2)–HBT) by adding benzotriazole as a pore-expanding agent, more importantly demonstrating its detailed mechanism. Well-dispersed silica nanospheres are shown to offer the release property for benzotriazole triggered by UV and heat irradiation while durable UV protection due to the supplementary of benzotriazole in the PBAT matrix. With benzotriazole compensation, the halving period of elongation at break performance was extended from about 15 to 48 h. Combined with gel content and gel permeation chromatography analyses, it was inferred that the process of crosslinking resulting from Norrish I can be effectively minimized by the action of SiO(2)–HBT. The design of modified release strategy realizes the durable UV absorption ability of the hydroxyphenyl benzotriazole class of photostabilizers in particular but more generally highlights an important adding method that should be considered when utilizing a photostabilizer. |
---|