Cargando…
A Differentiable Neural-Network Force Field for Ionic Liquids
[Image: see text] We present NeuralIL, a model for the potential energy of an ionic liquid that accurately reproduces first-principles results with orders-of-magnitude savings in computational cost. Built on the basis of a multilayer perceptron and spherical Bessel descriptors of the atomic environm...
Autores principales: | Montes-Campos, Hadrián, Carrete, Jesús, Bichelmaier, Sebastian, Varela, Luis M., Madsen, Georg K. H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8757435/ https://www.ncbi.nlm.nih.gov/pubmed/34941253 http://dx.doi.org/10.1021/acs.jcim.1c01380 |
Ejemplares similares
-
Neural-network-backed evolutionary search for SrTiO(3)(110) surface reconstructions
por: Wanzenböck, Ralf, et al.
Publicado: (2022) -
Molecular Dynamics Simulations of Ionic Liquids and
Electrolytes Using Polarizable Force Fields
por: Bedrov, Dmitry, et al.
Publicado: (2019) -
Structural Forces in Ionic Liquids: The Role of Ionic
Size Asymmetry
por: de Souza, J. Pedro, et al.
Publicado: (2022) -
Current Status of AMOEBA–IL: A Multipolar/Polarizable Force Field for Ionic Liquids
por: Vázquez-Montelongo, Erik Antonio, et al.
Publicado: (2020) -
BILFF: All-Atom Force Field for Modeling Triazolium- and Benzoate-Based Ionic Liquids
por: Roos, Eliane, et al.
Publicado: (2023)