Cargando…
Retinal cell transplantation in retinitis pigmentosa
Retinitis pigmentosa is the most common hereditary retinal disease. Dietary supplements, neuroprotective agents, cytokines, and lately, prosthetic devices, gene therapy, and optogenetics have been employed to slow down the retinal degeneration or improve light perception. Completing retinal circuitr...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8757529/ https://www.ncbi.nlm.nih.gov/pubmed/35070661 http://dx.doi.org/10.4103/tjo.tjo_48_21 |
_version_ | 1784632702030315520 |
---|---|
author | Tezel, Tongalp H. Ruff, Adam |
author_facet | Tezel, Tongalp H. Ruff, Adam |
author_sort | Tezel, Tongalp H. |
collection | PubMed |
description | Retinitis pigmentosa is the most common hereditary retinal disease. Dietary supplements, neuroprotective agents, cytokines, and lately, prosthetic devices, gene therapy, and optogenetics have been employed to slow down the retinal degeneration or improve light perception. Completing retinal circuitry by transplanting photoreceptors has always been an appealing idea in retinitis pigmentosa. Recent developments in stem cell technology, retinal imaging techniques, tissue engineering, and transplantation techniques have brought us closer to accomplish this goal. The eye is an ideal organ for cell transplantation due to a low number of cells required to restore vision, availability of safe surgical and imaging techniques to transplant and track the cells in vivo, and partial immune privilege provided by the subretinal space. Human embryonic stem cells, induced pluripotential stem cells, and especially retinal organoids provide an adequate number of cells at a desired developmental stage which may maximize integration of the graft to host retina. However, stem cells must be manufactured under strict good manufacturing practice protocols due to known tumorigenicity as well as possible genetic and epigenetic stabilities that may pose a danger to the recipient. Immune compatibility of stem cells still stands as a problem for their widespread use for retinitis pigmentosa. Transplantation of stem cells from different sources revealed that some of the transplanted cells may not integrate the host retina but slow down the retinal degeneration through paracrine mechanisms. Discovery of a similar paracrine mechanism has recently opened a new therapeutic path for reversing the cone dormancy and restoring the sight in retinitis pigmentosa. |
format | Online Article Text |
id | pubmed-8757529 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Wolters Kluwer - Medknow |
record_format | MEDLINE/PubMed |
spelling | pubmed-87575292022-01-21 Retinal cell transplantation in retinitis pigmentosa Tezel, Tongalp H. Ruff, Adam Taiwan J Ophthalmol Review Article Retinitis pigmentosa is the most common hereditary retinal disease. Dietary supplements, neuroprotective agents, cytokines, and lately, prosthetic devices, gene therapy, and optogenetics have been employed to slow down the retinal degeneration or improve light perception. Completing retinal circuitry by transplanting photoreceptors has always been an appealing idea in retinitis pigmentosa. Recent developments in stem cell technology, retinal imaging techniques, tissue engineering, and transplantation techniques have brought us closer to accomplish this goal. The eye is an ideal organ for cell transplantation due to a low number of cells required to restore vision, availability of safe surgical and imaging techniques to transplant and track the cells in vivo, and partial immune privilege provided by the subretinal space. Human embryonic stem cells, induced pluripotential stem cells, and especially retinal organoids provide an adequate number of cells at a desired developmental stage which may maximize integration of the graft to host retina. However, stem cells must be manufactured under strict good manufacturing practice protocols due to known tumorigenicity as well as possible genetic and epigenetic stabilities that may pose a danger to the recipient. Immune compatibility of stem cells still stands as a problem for their widespread use for retinitis pigmentosa. Transplantation of stem cells from different sources revealed that some of the transplanted cells may not integrate the host retina but slow down the retinal degeneration through paracrine mechanisms. Discovery of a similar paracrine mechanism has recently opened a new therapeutic path for reversing the cone dormancy and restoring the sight in retinitis pigmentosa. Wolters Kluwer - Medknow 2021-12-06 /pmc/articles/PMC8757529/ /pubmed/35070661 http://dx.doi.org/10.4103/tjo.tjo_48_21 Text en Copyright: © 2021 Taiwan Journal of Ophthalmology https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Review Article Tezel, Tongalp H. Ruff, Adam Retinal cell transplantation in retinitis pigmentosa |
title | Retinal cell transplantation in retinitis pigmentosa |
title_full | Retinal cell transplantation in retinitis pigmentosa |
title_fullStr | Retinal cell transplantation in retinitis pigmentosa |
title_full_unstemmed | Retinal cell transplantation in retinitis pigmentosa |
title_short | Retinal cell transplantation in retinitis pigmentosa |
title_sort | retinal cell transplantation in retinitis pigmentosa |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8757529/ https://www.ncbi.nlm.nih.gov/pubmed/35070661 http://dx.doi.org/10.4103/tjo.tjo_48_21 |
work_keys_str_mv | AT tezeltongalph retinalcelltransplantationinretinitispigmentosa AT ruffadam retinalcelltransplantationinretinitispigmentosa |