Cargando…
Xuanfei Baidu Decoction reduces acute lung injury by regulating infiltration of neutrophils and macrophages via PD-1/IL17A pathway
The pathogenic hyper-inflammatory response has been revealed as the major cause of the severity and death of the Corona Virus Disease 2019 (COVID-19). Xuanfei Baidu Decoction (XFBD) as one of the “three medicines and three prescriptions” for the clinically effective treatment of COVID-19 in China, s...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8757644/ https://www.ncbi.nlm.nih.gov/pubmed/35033647 http://dx.doi.org/10.1016/j.phrs.2022.106083 |
Sumario: | The pathogenic hyper-inflammatory response has been revealed as the major cause of the severity and death of the Corona Virus Disease 2019 (COVID-19). Xuanfei Baidu Decoction (XFBD) as one of the “three medicines and three prescriptions” for the clinically effective treatment of COVID-19 in China, shows unique advantages in the control of symptomatic transition from moderate to severe disease states. However, the roles of XFBD to against hyper-inflammatory response and its mechanism remain unclear. Here, we established acute lung injury (ALI) model induced by lipopolysaccharide (LPS), presenting a hyperinflammatory process to explore the pharmacodynamic effect and molecular mechanism of XFBD on ALI. The in vitro experiments demonstrated that XFBD inhibited the secretion of IL-6 and TNF-α and iNOS activity in LPS-stimulated RAW264.7 macrophages. In vivo, we confirmed that XFBD improved pulmonary injury via down-regulating the expression of proinflammatory cytokines such as IL-6, TNF-α and IL1-β as well as macrophages and neutrophils infiltration in LPS-induced ALI mice. Mechanically, we revealed that XFBD treated LPS-induced acute lung injury through PD-1/IL17A pathway which regulates the infiltration of neutrophils and macrophages. Additionally, one major compound from XFBD, i.e. glycyrrhizic acid, shows a high binding affinity with IL17A. In conclusion, we demonstrated the therapeutic effects of XFBD, which provides the immune foundations of XFBD and fatherly support its clinical applications. |
---|