Cargando…
Detection of COVID-19 in smartphone-based breathing recordings: A pre-screening deep learning tool
This study was sought to investigate the feasibility of using smartphone-based breathing sounds within a deep learning framework to discriminate between COVID-19, including asymptomatic, and healthy subjects. A total of 480 breathing sounds (240 shallow and 240 deep) were obtained from a publicly av...
Autores principales: | Alkhodari, Mohanad, Khandoker, Ahsan H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8758005/ https://www.ncbi.nlm.nih.gov/pubmed/35025945 http://dx.doi.org/10.1371/journal.pone.0262448 |
Ejemplares similares
-
A two-step pre-processing tool to remove Gaussian and ectopic noise for heart rate variability analysis
por: Saleem, Shiza, et al.
Publicado: (2022) -
Deep learning identifies cardiac coupling between mother and fetus during gestation
por: Alkhodari, Mohanad, et al.
Publicado: (2022) -
Machine Learning for Screening Microvascular Complications in Type 2 Diabetic Patients Using Demographic, Clinical, and Laboratory Profiles
por: Rashid, Mamunur, et al.
Publicado: (2022) -
Prediction of fetal RR intervals from maternal factors using machine learning models
por: Widatalla, Namareq, et al.
Publicado: (2023) -
Investigating the effects of beta-blockers on circadian heart rhythm using heart rate variability in ischemic heart disease with preserved ejection fraction
por: Saleem, Shiza, et al.
Publicado: (2023)