Cargando…
Evolutionary paths to macrolide resistance in a Neisseria commensal converge on ribosomal genes through short sequence duplications
Neisseria commensals are an indisputable source of resistance for their pathogenic relatives. However, the evolutionary paths commensal species take to reduced susceptibility in this genus have been relatively underexplored. Here, we leverage in vitro selection as a powerful screen to identify the g...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8758062/ https://www.ncbi.nlm.nih.gov/pubmed/35025928 http://dx.doi.org/10.1371/journal.pone.0262370 |
_version_ | 1784632820963999744 |
---|---|
author | Raisman, Jordan C. Fiore, Michael A. Tomin, Lucille Adjei, Joseph K. O. Aswad, Virginia X. Chu, Jonathan Domondon, Christina J. Donahue, Ben A. Masciotti, Claudia A. McGrath, Connor G. Melita, Jo Podbielski, Paul A. Schreiner, Madelyn R. Trumpore, Lauren J. Wengert, Peter C. Wrightstone, Emalee A. Hudson, André O. Wadsworth, Crista B. |
author_facet | Raisman, Jordan C. Fiore, Michael A. Tomin, Lucille Adjei, Joseph K. O. Aswad, Virginia X. Chu, Jonathan Domondon, Christina J. Donahue, Ben A. Masciotti, Claudia A. McGrath, Connor G. Melita, Jo Podbielski, Paul A. Schreiner, Madelyn R. Trumpore, Lauren J. Wengert, Peter C. Wrightstone, Emalee A. Hudson, André O. Wadsworth, Crista B. |
author_sort | Raisman, Jordan C. |
collection | PubMed |
description | Neisseria commensals are an indisputable source of resistance for their pathogenic relatives. However, the evolutionary paths commensal species take to reduced susceptibility in this genus have been relatively underexplored. Here, we leverage in vitro selection as a powerful screen to identify the genetic adaptations that produce azithromycin resistance (≥ 2 μg/mL) in the Neisseria commensal, N. elongata. Across multiple lineages (n = 7/16), we find mutations that reduce susceptibility to azithromycin converge on the locus encoding the 50S ribosomal L34 protein (rpmH) and the intergenic region proximal to the 30S ribosomal S3 protein (rpsC) through short tandem duplication events. Interestingly, one of the laboratory evolved mutations in rpmH is identical (7LKRTYQ12), and two nearly identical, to those recently reported to contribute to high-level azithromycin resistance in N. gonorrhoeae. Transformations into the ancestral N. elongata lineage confirmed the causality of both rpmH and rpsC mutations. Though most lineages inheriting duplications suffered in vitro fitness costs, one variant showed no growth defect, suggesting the possibility that it may be sustained in natural populations. Ultimately, studies like this will be critical for predicting commensal alleles that could rapidly disseminate into pathogen populations via allelic exchange across recombinogenic microbial genera. |
format | Online Article Text |
id | pubmed-8758062 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-87580622022-01-14 Evolutionary paths to macrolide resistance in a Neisseria commensal converge on ribosomal genes through short sequence duplications Raisman, Jordan C. Fiore, Michael A. Tomin, Lucille Adjei, Joseph K. O. Aswad, Virginia X. Chu, Jonathan Domondon, Christina J. Donahue, Ben A. Masciotti, Claudia A. McGrath, Connor G. Melita, Jo Podbielski, Paul A. Schreiner, Madelyn R. Trumpore, Lauren J. Wengert, Peter C. Wrightstone, Emalee A. Hudson, André O. Wadsworth, Crista B. PLoS One Research Article Neisseria commensals are an indisputable source of resistance for their pathogenic relatives. However, the evolutionary paths commensal species take to reduced susceptibility in this genus have been relatively underexplored. Here, we leverage in vitro selection as a powerful screen to identify the genetic adaptations that produce azithromycin resistance (≥ 2 μg/mL) in the Neisseria commensal, N. elongata. Across multiple lineages (n = 7/16), we find mutations that reduce susceptibility to azithromycin converge on the locus encoding the 50S ribosomal L34 protein (rpmH) and the intergenic region proximal to the 30S ribosomal S3 protein (rpsC) through short tandem duplication events. Interestingly, one of the laboratory evolved mutations in rpmH is identical (7LKRTYQ12), and two nearly identical, to those recently reported to contribute to high-level azithromycin resistance in N. gonorrhoeae. Transformations into the ancestral N. elongata lineage confirmed the causality of both rpmH and rpsC mutations. Though most lineages inheriting duplications suffered in vitro fitness costs, one variant showed no growth defect, suggesting the possibility that it may be sustained in natural populations. Ultimately, studies like this will be critical for predicting commensal alleles that could rapidly disseminate into pathogen populations via allelic exchange across recombinogenic microbial genera. Public Library of Science 2022-01-13 /pmc/articles/PMC8758062/ /pubmed/35025928 http://dx.doi.org/10.1371/journal.pone.0262370 Text en © 2022 Raisman et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Raisman, Jordan C. Fiore, Michael A. Tomin, Lucille Adjei, Joseph K. O. Aswad, Virginia X. Chu, Jonathan Domondon, Christina J. Donahue, Ben A. Masciotti, Claudia A. McGrath, Connor G. Melita, Jo Podbielski, Paul A. Schreiner, Madelyn R. Trumpore, Lauren J. Wengert, Peter C. Wrightstone, Emalee A. Hudson, André O. Wadsworth, Crista B. Evolutionary paths to macrolide resistance in a Neisseria commensal converge on ribosomal genes through short sequence duplications |
title | Evolutionary paths to macrolide resistance in a Neisseria commensal converge on ribosomal genes through short sequence duplications |
title_full | Evolutionary paths to macrolide resistance in a Neisseria commensal converge on ribosomal genes through short sequence duplications |
title_fullStr | Evolutionary paths to macrolide resistance in a Neisseria commensal converge on ribosomal genes through short sequence duplications |
title_full_unstemmed | Evolutionary paths to macrolide resistance in a Neisseria commensal converge on ribosomal genes through short sequence duplications |
title_short | Evolutionary paths to macrolide resistance in a Neisseria commensal converge on ribosomal genes through short sequence duplications |
title_sort | evolutionary paths to macrolide resistance in a neisseria commensal converge on ribosomal genes through short sequence duplications |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8758062/ https://www.ncbi.nlm.nih.gov/pubmed/35025928 http://dx.doi.org/10.1371/journal.pone.0262370 |
work_keys_str_mv | AT raismanjordanc evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT fioremichaela evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT tominlucille evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT adjeijosephko evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT aswadvirginiax evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT chujonathan evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT domondonchristinaj evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT donahuebena evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT masciotticlaudiaa evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT mcgrathconnorg evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT melitajo evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT podbielskipaula evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT schreinermadelynr evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT trumporelaurenj evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT wengertpeterc evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT wrightstoneemaleea evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT hudsonandreo evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications AT wadsworthcristab evolutionarypathstomacrolideresistanceinaneisseriacommensalconvergeonribosomalgenesthroughshortsequenceduplications |