Cargando…

Image Captioning with Bidirectional Semantic Attention-Based Guiding of Long Short-Term Memory

Automatically describing contents of an image using natural language has drawn much attention because it not only integrates computer vision and natural language processing but also has practical applications. Using an end-to-end approach, we propose a bidirectional semantic attention-based guiding...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Pengfei, Yang, Zhongyi, Sun, Liang, Liang, Yanchun, Yang, Mary Qu, Guan, Renchu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8758065/
https://www.ncbi.nlm.nih.gov/pubmed/35035261
http://dx.doi.org/10.1007/s11063-018-09973-5
Descripción
Sumario:Automatically describing contents of an image using natural language has drawn much attention because it not only integrates computer vision and natural language processing but also has practical applications. Using an end-to-end approach, we propose a bidirectional semantic attention-based guiding of long short-term memory (Bag-LSTM) model for image captioning. The proposed model consciously refines image features from previously generated text. By fine-tuning the parameters of convolution neural networks, Bag-LSTM obtains more text-related image features via feedback propagation than other models. As opposed to existing guidance-LSTM methods which directly add image features into each unit of an LSTM block, our fine-tuned model dynamically leverages more text-conditional image features, acquired by the semantic attention mechanism, as guidance information. Moreover, we exploit bidirectional gLSTM as the caption generator, which is capable of learning long term relations between visual features and semantic information by making use of both historical and future contextual information. In addition, variations of the Bag-LSTM model are proposed in an effort to sufficiently describe high-level visual-language interactions. Experiments on the Flickr8k and MSCOCO benchmark datasets demonstrate the effectiveness of the model, as compared with the baseline algorithms, such as it is 51.2% higher than BRNN on CIDEr metric.