Cargando…
Benchmarking Effectiveness and Efficiency of Deep Learning Models for Semantic Textual Similarity in the Clinical Domain: Validation Study
BACKGROUND: Semantic textual similarity (STS) measures the degree of relatedness between sentence pairs. The Open Health Natural Language Processing (OHNLP) Consortium released an expertly annotated STS data set and called for the National Natural Language Processing Clinical Challenges. This work d...
Autores principales: | Chen, Qingyu, Rankine, Alex, Peng, Yifan, Aghaarabi, Elaheh, Lu, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759018/ https://www.ncbi.nlm.nih.gov/pubmed/34967748 http://dx.doi.org/10.2196/27386 |
Ejemplares similares
-
Semantic Textual Similarity in Japanese Clinical Domain Texts Using BERT
por: Mutinda, Faith Wavinya, et al.
Publicado: (2021) -
Semantic textual similarity for modern standard and dialectal Arabic using transfer learning
por: Al Sulaiman, Mansour, et al.
Publicado: (2022) -
Measurement of Semantic Textual Similarity in Clinical Texts: Comparison of Transformer-Based Models
por: Yang, Xi, et al.
Publicado: (2020) -
An Ensemble Semantic Textual Similarity Measure Based on Multiple Evidences for Biomedical Documents
por: Li, Meijing, et al.
Publicado: (2022) -
ALBERT-Based Self-Ensemble Model With Semisupervised Learning and Data Augmentation for Clinical Semantic Textual Similarity Calculation: Algorithm Validation Study
por: Li, Junyi, et al.
Publicado: (2021)