Cargando…

Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides

[Image: see text] Natural photosystems use protein scaffolds to control intermolecular interactions that enable exciton flow, charge generation, and long-range charge separation. In contrast, there is limited structural control in current organic electronic devices such as OLEDs and solar cells. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Gorman, Jeffrey, Orsborne, Sarah R. E., Sridhar, Akshay, Pandya, Raj, Budden, Peter, Ohmann, Alexander, Panjwani, Naitik A., Liu, Yun, Greenfield, Jake L., Dowland, Simon, Gray, Victor, Ryan, Seán T. J., De Ornellas, Sara, El-Sagheer, Afaf H., Brown, Tom, Nitschke, Jonathan R., Behrends, Jan, Keyser, Ulrich F., Rao, Akshay, Collepardo-Guevara, Rosana, Stulz, Eugen, Friend, Richard H., Auras, Florian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759064/
https://www.ncbi.nlm.nih.gov/pubmed/34936763
http://dx.doi.org/10.1021/jacs.1c10241
_version_ 1784633033681272832
author Gorman, Jeffrey
Orsborne, Sarah R. E.
Sridhar, Akshay
Pandya, Raj
Budden, Peter
Ohmann, Alexander
Panjwani, Naitik A.
Liu, Yun
Greenfield, Jake L.
Dowland, Simon
Gray, Victor
Ryan, Seán T. J.
De Ornellas, Sara
El-Sagheer, Afaf H.
Brown, Tom
Nitschke, Jonathan R.
Behrends, Jan
Keyser, Ulrich F.
Rao, Akshay
Collepardo-Guevara, Rosana
Stulz, Eugen
Friend, Richard H.
Auras, Florian
author_facet Gorman, Jeffrey
Orsborne, Sarah R. E.
Sridhar, Akshay
Pandya, Raj
Budden, Peter
Ohmann, Alexander
Panjwani, Naitik A.
Liu, Yun
Greenfield, Jake L.
Dowland, Simon
Gray, Victor
Ryan, Seán T. J.
De Ornellas, Sara
El-Sagheer, Afaf H.
Brown, Tom
Nitschke, Jonathan R.
Behrends, Jan
Keyser, Ulrich F.
Rao, Akshay
Collepardo-Guevara, Rosana
Stulz, Eugen
Friend, Richard H.
Auras, Florian
author_sort Gorman, Jeffrey
collection PubMed
description [Image: see text] Natural photosystems use protein scaffolds to control intermolecular interactions that enable exciton flow, charge generation, and long-range charge separation. In contrast, there is limited structural control in current organic electronic devices such as OLEDs and solar cells. We report here the DNA-encoded assembly of π-conjugated perylene diimides (PDIs) with deterministic control over the number of electronically coupled molecules. The PDIs are integrated within DNA chains using phosphoramidite coupling chemistry, allowing selection of the DNA sequence to either side, and specification of intermolecular DNA hybridization. In this way, we have developed a “toolbox” for construction of any stacking sequence of these semiconducting molecules. We have discovered that we need to use a full hierarchy of interactions: DNA guides the semiconductors into specified close proximity, hydrophobic–hydrophilic differentiation drives aggregation of the semiconductor moieties, and local geometry and electrostatic interactions define intermolecular positioning. As a result, the PDIs pack to give substantial intermolecular π wave function overlap, leading to an evolution of singlet excited states from localized excitons in the PDI monomer to excimers with wave functions delocalized over all five PDIs in the pentamer. This is accompanied by a change in the dominant triplet forming mechanism from localized spin–orbit charge transfer mediated intersystem crossing for the monomer toward a delocalized excimer process for the pentamer. Our modular DNA-based assembly reveals real opportunities for the rapid development of bespoke semiconductor architectures with molecule-by-molecule precision.
format Online
Article
Text
id pubmed-8759064
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-87590642022-01-14 Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides Gorman, Jeffrey Orsborne, Sarah R. E. Sridhar, Akshay Pandya, Raj Budden, Peter Ohmann, Alexander Panjwani, Naitik A. Liu, Yun Greenfield, Jake L. Dowland, Simon Gray, Victor Ryan, Seán T. J. De Ornellas, Sara El-Sagheer, Afaf H. Brown, Tom Nitschke, Jonathan R. Behrends, Jan Keyser, Ulrich F. Rao, Akshay Collepardo-Guevara, Rosana Stulz, Eugen Friend, Richard H. Auras, Florian J Am Chem Soc [Image: see text] Natural photosystems use protein scaffolds to control intermolecular interactions that enable exciton flow, charge generation, and long-range charge separation. In contrast, there is limited structural control in current organic electronic devices such as OLEDs and solar cells. We report here the DNA-encoded assembly of π-conjugated perylene diimides (PDIs) with deterministic control over the number of electronically coupled molecules. The PDIs are integrated within DNA chains using phosphoramidite coupling chemistry, allowing selection of the DNA sequence to either side, and specification of intermolecular DNA hybridization. In this way, we have developed a “toolbox” for construction of any stacking sequence of these semiconducting molecules. We have discovered that we need to use a full hierarchy of interactions: DNA guides the semiconductors into specified close proximity, hydrophobic–hydrophilic differentiation drives aggregation of the semiconductor moieties, and local geometry and electrostatic interactions define intermolecular positioning. As a result, the PDIs pack to give substantial intermolecular π wave function overlap, leading to an evolution of singlet excited states from localized excitons in the PDI monomer to excimers with wave functions delocalized over all five PDIs in the pentamer. This is accompanied by a change in the dominant triplet forming mechanism from localized spin–orbit charge transfer mediated intersystem crossing for the monomer toward a delocalized excimer process for the pentamer. Our modular DNA-based assembly reveals real opportunities for the rapid development of bespoke semiconductor architectures with molecule-by-molecule precision. American Chemical Society 2021-12-22 2022-01-12 /pmc/articles/PMC8759064/ /pubmed/34936763 http://dx.doi.org/10.1021/jacs.1c10241 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Gorman, Jeffrey
Orsborne, Sarah R. E.
Sridhar, Akshay
Pandya, Raj
Budden, Peter
Ohmann, Alexander
Panjwani, Naitik A.
Liu, Yun
Greenfield, Jake L.
Dowland, Simon
Gray, Victor
Ryan, Seán T. J.
De Ornellas, Sara
El-Sagheer, Afaf H.
Brown, Tom
Nitschke, Jonathan R.
Behrends, Jan
Keyser, Ulrich F.
Rao, Akshay
Collepardo-Guevara, Rosana
Stulz, Eugen
Friend, Richard H.
Auras, Florian
Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides
title Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides
title_full Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides
title_fullStr Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides
title_full_unstemmed Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides
title_short Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides
title_sort deoxyribonucleic acid encoded and size-defined π-stacking of perylene diimides
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759064/
https://www.ncbi.nlm.nih.gov/pubmed/34936763
http://dx.doi.org/10.1021/jacs.1c10241
work_keys_str_mv AT gormanjeffrey deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT orsbornesarahre deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT sridharakshay deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT pandyaraj deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT buddenpeter deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT ohmannalexander deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT panjwaninaitika deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT liuyun deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT greenfieldjakel deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT dowlandsimon deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT grayvictor deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT ryanseantj deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT deornellassara deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT elsagheerafafh deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT browntom deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT nitschkejonathanr deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT behrendsjan deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT keyserulrichf deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT raoakshay deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT collepardoguevararosana deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT stulzeugen deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT friendrichardh deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides
AT aurasflorian deoxyribonucleicacidencodedandsizedefinedpstackingofperylenediimides