Cargando…

Tuning Epithelial Cell–Cell Adhesion and Collective Dynamics with Functional DNA-E-Cadherin Hybrid Linkers

[Image: see text] The binding strength between epithelial cells is crucial for tissue integrity, signal transduction and collective cell dynamics. However, there is no experimental approach to precisely modulate cell–cell adhesion strength at the cellular and molecular level. Here, we establish DNA...

Descripción completa

Detalles Bibliográficos
Autores principales: Schoenit, Andreas, Lo Giudice, Cristina, Hahnen, Nina, Ollech, Dirk, Jahnke, Kevin, Göpfrich, Kerstin, Cavalcanti-Adam, Elisabetta Ada
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759084/
https://www.ncbi.nlm.nih.gov/pubmed/34939414
http://dx.doi.org/10.1021/acs.nanolett.1c03780
Descripción
Sumario:[Image: see text] The binding strength between epithelial cells is crucial for tissue integrity, signal transduction and collective cell dynamics. However, there is no experimental approach to precisely modulate cell–cell adhesion strength at the cellular and molecular level. Here, we establish DNA nanotechnology as a tool to control cell–cell adhesion of epithelial cells. We designed a DNA-E-cadherin hybrid system consisting of complementary DNA strands covalently bound to a truncated E-cadherin with a modified extracellular domain. DNA sequence design allows to tune the DNA-E-cadherin hybrid molecular binding strength, while retaining its cytosolic interactions and downstream signaling capabilities. The DNA-E-cadherin hybrid facilitates strong and reversible cell–cell adhesion in E-cadherin deficient cells by forming mechanotransducive adherens junctions. We assess the direct influence of cell–cell adhesion strength on intracellular signaling and collective cell dynamics. This highlights the scope of DNA nanotechnology as a precision technology to study and engineer cell collectives.