Cargando…
Completeness of reporting of clinical prediction models developed using supervised machine learning: a systematic review
BACKGROUND: While many studies have consistently found incomplete reporting of regression-based prediction model studies, evidence is lacking for machine learning-based prediction model studies. We aim to systematically review the adherence of Machine Learning (ML)-based prediction model studies to...
Autores principales: | Andaur Navarro, Constanza L., Damen, Johanna A. A., Takada, Toshihiko, Nijman, Steven W. J., Dhiman, Paula, Ma, Jie, Collins, Gary S., Bajpai, Ram, Riley, Richard D., Moons, Karel G. M., Hooft, Lotty |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759172/ https://www.ncbi.nlm.nih.gov/pubmed/35026997 http://dx.doi.org/10.1186/s12874-021-01469-6 |
Ejemplares similares
-
Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review
por: Andaur Navarro, Constanza L, et al.
Publicado: (2021) -
Protocol for a systematic review on the methodological and reporting quality of prediction model studies using machine learning techniques
por: Andaur Navarro, Constanza L, et al.
Publicado: (2020) -
Reporting of prognostic clinical prediction models based on machine learning methods in oncology needs to be improved
por: Dhiman, Paula, et al.
Publicado: (2021) -
Risk of bias of prognostic models developed using machine learning: a systematic review in oncology
por: Dhiman, Paula, et al.
Publicado: (2022) -
Methodological conduct of prognostic prediction models developed using machine learning in oncology: a systematic review
por: Dhiman, Paula, et al.
Publicado: (2022)