Cargando…
Machine Learning–based Sleep Staging in Patients with Sleep Apnea Using a Single Mandibular Movement Signal
Autores principales: | Le-Dong, Nhat-Nam, Martinot, Jean-Benoit, Coumans, Nathalie, Cuthbert, Valérie, Tamisier, Renaud, Bailly, Sébastien, Pépin, Jean-Louis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Thoracic Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759305/ https://www.ncbi.nlm.nih.gov/pubmed/34297641 http://dx.doi.org/10.1164/rccm.202103-0680LE |
Ejemplares similares
-
Mandibular Movements are a Reliable Noninvasive Alternative to Esophageal Pressure for Measuring Respiratory Effort in Patients with Sleep Apnea Syndrome
por: Pepin, Jean-Louis, et al.
Publicado: (2022) -
Assessment of Mandibular Movement Monitoring With Machine Learning Analysis for the Diagnosis of Obstructive Sleep Apnea
por: Pépin, Jean-Louis, et al.
Publicado: (2020) -
Respiratory Mandibular Movement Signals Reliably Identify Obstructive Hypopnea Events During Sleep
por: Martinot, Jean-Benoit, et al.
Publicado: (2019) -
Artificial Intelligence Analysis of Mandibular Movements Enables Accurate Detection of Phasic Sleep Bruxism in OSA Patients: A Pilot Study
por: Martinot, Jean-Benoit, et al.
Publicado: (2021) -
Mandibular Movements As Accurate Reporters of Respiratory Effort during Sleep: Validation against Diaphragmatic Electromyography
por: Martinot, Jean-Benoît, et al.
Publicado: (2017)