Cargando…
Matching anticancer compounds and tumor cell lines by neural networks with ranking loss
Computational drug sensitivity models have the potential to improve therapeutic outcomes by identifying targeted drug components that are likely to achieve the highest efficacy for a cancer cell line at hand at a therapeutic dose. State of the art drug sensitivity models use regression techniques to...
Autores principales: | Prasse, Paul, Iversen, Pascal, Lienhard, Matthias, Thedinga, Kristina, Bauer, Chris, Herwig, Ralf, Scheffer, Tobias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759564/ https://www.ncbi.nlm.nih.gov/pubmed/35047818 http://dx.doi.org/10.1093/nargab/lqab128 |
Ejemplares similares
-
Pre-Training on In Vitro and Fine-Tuning on Patient-Derived Data Improves Deep Neural Networks for Anti-Cancer Drug-Sensitivity Prediction
por: Prasse, Paul, et al.
Publicado: (2022) -
Large-scale literature mining to assess the relation between anti-cancer drugs and cancer types
por: Bauer, Chris, et al.
Publicado: (2021) -
A gradient tree boosting and network propagation derived pan-cancer survival network of the tumor microenvironment
por: Thedinga, Kristina, et al.
Publicado: (2021) -
Gradient tree boosting and network propagation for the identification of pan-cancer survival networks
por: Thedinga, Kristina, et al.
Publicado: (2022) -
ARH-seq: identification of differential splicing in RNA-seq data
por: Rasche, Axel, et al.
Publicado: (2014)