Cargando…

Impact of Early Intravenous Haemostatic Drugs on Brain Haemorrhage Patients and Their Image Segmentation Based on RGB-D Images

Cerebral haemorrhage is a serious subtype of stroke, with most patients experiencing short-term haematoma enlargement leading to worsening neurological symptoms and death. The main hemostatic agents currently used for cerebral haemorrhage are antifibrinolytics and recombinant coagulation factor VIIa...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhenzhen, Mou, Yating, Li, Hao, Yang, Rui, Jia, Yanxun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759877/
https://www.ncbi.nlm.nih.gov/pubmed/35035838
http://dx.doi.org/10.1155/2022/4608648
Descripción
Sumario:Cerebral haemorrhage is a serious subtype of stroke, with most patients experiencing short-term haematoma enlargement leading to worsening neurological symptoms and death. The main hemostatic agents currently used for cerebral haemorrhage are antifibrinolytics and recombinant coagulation factor VIIa. However, there is no clinical evidence that patients with cerebral haemorrhage can benefit from hemostatic treatment. We provide an overview of the mechanisms of haematoma expansion in cerebral haemorrhage and the progress of research on commonly used hemostatic drugs. To improve the semantic segmentation accuracy of cerebral haemorrhage, a segmentation method based on RGB-D images is proposed. Firstly, the parallax map was obtained based on a semiglobal stereo matching algorithm and fused with RGB images to form a four-channel RGB-D image to build a sample library. Secondly, the networks were trained with 2 different learning rate adjustment strategies for 2 different structures of convolutional neural networks. Finally, the trained networks were tested and compared for analysis. The 146 head CT images from the Chinese intracranial haemorrhage image database were divided into a training set and a test set using the random number table method. The validation set was divided into four methods: manual segmentation, algorithmic segmentation, the exact Tada formula, and the traditional Tada formula to measure the haematoma volume. The manual segmentation was used as the “gold standard,” and the other three algorithms were tested for consistency. The results showed that the algorithmic segmentation had the lowest percentage error of 15.54 (8.41, 23.18) % compared to the Tada formula method.