Cargando…
A spatiotemporal machine learning approach to forecasting COVID-19 incidence at the county level in the USA
With COVID-19 affecting every country globally and changing everyday life, the ability to forecast the spread of the disease is more important than any previous epidemic. The conventional methods of disease-spread modeling, compartmental models, are based on the assumption of spatiotemporal homogene...
Autores principales: | Lucas, Benjamin, Vahedi, Behzad, Karimzadeh, Morteza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760128/ https://www.ncbi.nlm.nih.gov/pubmed/35071733 http://dx.doi.org/10.1007/s41060-021-00295-9 |
Ejemplares similares
-
Spatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions
por: Vahedi, Behzad, et al.
Publicado: (2021) -
County-level associations between tobacco retailer density and smoking prevalence in the USA, 2012
por: Golden, Shelley D., et al.
Publicado: (2019) -
From data to interpretable models: machine learning for soil moisture forecasting
por: Basak, Aniruddha, et al.
Publicado: (2022) -
Temporal and Spatiotemporal Arboviruses Forecasting by Machine Learning: A Systematic Review
por: de Lima, Clarisse Lins, et al.
Publicado: (2022) -
Forecasting COVID-19 and Other Infectious Diseases for Proactive Policy: Artificial Intelligence Can Help
por: Karimzadeh, Morteza, et al.
Publicado: (2023)