Cargando…
Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium
Photosystem I (PSI) is one of two photosystems involved in oxygenic photosynthesis. PSI of cyanobacteria exists in monomeric, trimeric, and tetrameric forms, in contrast to the strictly monomeric form of PSI in plants and algae. The tetrameric organization raises questions about its structural, phys...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760143/ https://www.ncbi.nlm.nih.gov/pubmed/35059628 http://dx.doi.org/10.1016/j.xplc.2021.100248 |
_version_ | 1784633257932881920 |
---|---|
author | Semchonok, Dmitry A. Mondal, Jyotirmoy Cooper, Connor J. Schlum, Katrina Li, Meng Amin, Muhamed Sorzano, Carlos O.S. Ramírez-Aportela, Erney Kastritis, Panagiotis L. Boekema, Egbert J. Guskov, Albert Bruce, Barry D. |
author_facet | Semchonok, Dmitry A. Mondal, Jyotirmoy Cooper, Connor J. Schlum, Katrina Li, Meng Amin, Muhamed Sorzano, Carlos O.S. Ramírez-Aportela, Erney Kastritis, Panagiotis L. Boekema, Egbert J. Guskov, Albert Bruce, Barry D. |
author_sort | Semchonok, Dmitry A. |
collection | PubMed |
description | Photosystem I (PSI) is one of two photosystems involved in oxygenic photosynthesis. PSI of cyanobacteria exists in monomeric, trimeric, and tetrameric forms, in contrast to the strictly monomeric form of PSI in plants and algae. The tetrameric organization raises questions about its structural, physiological, and evolutionary significance. Here we report the ∼3.72 Å resolution cryo-electron microscopy structure of tetrameric PSI from the thermophilic, unicellular cyanobacterium Chroococcidiopsis sp. TS-821. The structure resolves 44 subunits and 448 cofactor molecules. We conclude that the tetramer is arranged via two different interfaces resulting from a dimer-of-dimers organization. The localization of chlorophyll molecules permits an excitation energy pathway within and between adjacent monomers. Bioinformatics analysis reveals conserved regions in the PsaL subunit that correlate with the oligomeric state. Tetrameric PSI may function as a key evolutionary step between the trimeric and monomeric forms of PSI organization in photosynthetic organisms. |
format | Online Article Text |
id | pubmed-8760143 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-87601432022-01-19 Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium Semchonok, Dmitry A. Mondal, Jyotirmoy Cooper, Connor J. Schlum, Katrina Li, Meng Amin, Muhamed Sorzano, Carlos O.S. Ramírez-Aportela, Erney Kastritis, Panagiotis L. Boekema, Egbert J. Guskov, Albert Bruce, Barry D. Plant Commun Research Article Photosystem I (PSI) is one of two photosystems involved in oxygenic photosynthesis. PSI of cyanobacteria exists in monomeric, trimeric, and tetrameric forms, in contrast to the strictly monomeric form of PSI in plants and algae. The tetrameric organization raises questions about its structural, physiological, and evolutionary significance. Here we report the ∼3.72 Å resolution cryo-electron microscopy structure of tetrameric PSI from the thermophilic, unicellular cyanobacterium Chroococcidiopsis sp. TS-821. The structure resolves 44 subunits and 448 cofactor molecules. We conclude that the tetramer is arranged via two different interfaces resulting from a dimer-of-dimers organization. The localization of chlorophyll molecules permits an excitation energy pathway within and between adjacent monomers. Bioinformatics analysis reveals conserved regions in the PsaL subunit that correlate with the oligomeric state. Tetrameric PSI may function as a key evolutionary step between the trimeric and monomeric forms of PSI organization in photosynthetic organisms. Elsevier 2021-10-13 /pmc/articles/PMC8760143/ /pubmed/35059628 http://dx.doi.org/10.1016/j.xplc.2021.100248 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Semchonok, Dmitry A. Mondal, Jyotirmoy Cooper, Connor J. Schlum, Katrina Li, Meng Amin, Muhamed Sorzano, Carlos O.S. Ramírez-Aportela, Erney Kastritis, Panagiotis L. Boekema, Egbert J. Guskov, Albert Bruce, Barry D. Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium |
title | Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium |
title_full | Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium |
title_fullStr | Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium |
title_full_unstemmed | Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium |
title_short | Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium |
title_sort | cryo-em structure of a tetrameric photosystem i from chroococcidiopsis ts-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760143/ https://www.ncbi.nlm.nih.gov/pubmed/35059628 http://dx.doi.org/10.1016/j.xplc.2021.100248 |
work_keys_str_mv | AT semchonokdmitrya cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium AT mondaljyotirmoy cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium AT cooperconnorj cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium AT schlumkatrina cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium AT limeng cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium AT aminmuhamed cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium AT sorzanocarlosos cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium AT ramirezaportelaerney cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium AT kastritispanagiotisl cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium AT boekemaegbertj cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium AT guskovalbert cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium AT brucebarryd cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium |