Cargando…

Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium

Photosystem I (PSI) is one of two photosystems involved in oxygenic photosynthesis. PSI of cyanobacteria exists in monomeric, trimeric, and tetrameric forms, in contrast to the strictly monomeric form of PSI in plants and algae. The tetrameric organization raises questions about its structural, phys...

Descripción completa

Detalles Bibliográficos
Autores principales: Semchonok, Dmitry A., Mondal, Jyotirmoy, Cooper, Connor J., Schlum, Katrina, Li, Meng, Amin, Muhamed, Sorzano, Carlos O.S., Ramírez-Aportela, Erney, Kastritis, Panagiotis L., Boekema, Egbert J., Guskov, Albert, Bruce, Barry D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760143/
https://www.ncbi.nlm.nih.gov/pubmed/35059628
http://dx.doi.org/10.1016/j.xplc.2021.100248
_version_ 1784633257932881920
author Semchonok, Dmitry A.
Mondal, Jyotirmoy
Cooper, Connor J.
Schlum, Katrina
Li, Meng
Amin, Muhamed
Sorzano, Carlos O.S.
Ramírez-Aportela, Erney
Kastritis, Panagiotis L.
Boekema, Egbert J.
Guskov, Albert
Bruce, Barry D.
author_facet Semchonok, Dmitry A.
Mondal, Jyotirmoy
Cooper, Connor J.
Schlum, Katrina
Li, Meng
Amin, Muhamed
Sorzano, Carlos O.S.
Ramírez-Aportela, Erney
Kastritis, Panagiotis L.
Boekema, Egbert J.
Guskov, Albert
Bruce, Barry D.
author_sort Semchonok, Dmitry A.
collection PubMed
description Photosystem I (PSI) is one of two photosystems involved in oxygenic photosynthesis. PSI of cyanobacteria exists in monomeric, trimeric, and tetrameric forms, in contrast to the strictly monomeric form of PSI in plants and algae. The tetrameric organization raises questions about its structural, physiological, and evolutionary significance. Here we report the ∼3.72 Å resolution cryo-electron microscopy structure of tetrameric PSI from the thermophilic, unicellular cyanobacterium Chroococcidiopsis sp. TS-821. The structure resolves 44 subunits and 448 cofactor molecules. We conclude that the tetramer is arranged via two different interfaces resulting from a dimer-of-dimers organization. The localization of chlorophyll molecules permits an excitation energy pathway within and between adjacent monomers. Bioinformatics analysis reveals conserved regions in the PsaL subunit that correlate with the oligomeric state. Tetrameric PSI may function as a key evolutionary step between the trimeric and monomeric forms of PSI organization in photosynthetic organisms.
format Online
Article
Text
id pubmed-8760143
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-87601432022-01-19 Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium Semchonok, Dmitry A. Mondal, Jyotirmoy Cooper, Connor J. Schlum, Katrina Li, Meng Amin, Muhamed Sorzano, Carlos O.S. Ramírez-Aportela, Erney Kastritis, Panagiotis L. Boekema, Egbert J. Guskov, Albert Bruce, Barry D. Plant Commun Research Article Photosystem I (PSI) is one of two photosystems involved in oxygenic photosynthesis. PSI of cyanobacteria exists in monomeric, trimeric, and tetrameric forms, in contrast to the strictly monomeric form of PSI in plants and algae. The tetrameric organization raises questions about its structural, physiological, and evolutionary significance. Here we report the ∼3.72 Å resolution cryo-electron microscopy structure of tetrameric PSI from the thermophilic, unicellular cyanobacterium Chroococcidiopsis sp. TS-821. The structure resolves 44 subunits and 448 cofactor molecules. We conclude that the tetramer is arranged via two different interfaces resulting from a dimer-of-dimers organization. The localization of chlorophyll molecules permits an excitation energy pathway within and between adjacent monomers. Bioinformatics analysis reveals conserved regions in the PsaL subunit that correlate with the oligomeric state. Tetrameric PSI may function as a key evolutionary step between the trimeric and monomeric forms of PSI organization in photosynthetic organisms. Elsevier 2021-10-13 /pmc/articles/PMC8760143/ /pubmed/35059628 http://dx.doi.org/10.1016/j.xplc.2021.100248 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Semchonok, Dmitry A.
Mondal, Jyotirmoy
Cooper, Connor J.
Schlum, Katrina
Li, Meng
Amin, Muhamed
Sorzano, Carlos O.S.
Ramírez-Aportela, Erney
Kastritis, Panagiotis L.
Boekema, Egbert J.
Guskov, Albert
Bruce, Barry D.
Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium
title Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium
title_full Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium
title_fullStr Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium
title_full_unstemmed Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium
title_short Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium
title_sort cryo-em structure of a tetrameric photosystem i from chroococcidiopsis ts-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760143/
https://www.ncbi.nlm.nih.gov/pubmed/35059628
http://dx.doi.org/10.1016/j.xplc.2021.100248
work_keys_str_mv AT semchonokdmitrya cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium
AT mondaljyotirmoy cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium
AT cooperconnorj cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium
AT schlumkatrina cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium
AT limeng cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium
AT aminmuhamed cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium
AT sorzanocarlosos cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium
AT ramirezaportelaerney cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium
AT kastritispanagiotisl cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium
AT boekemaegbertj cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium
AT guskovalbert cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium
AT brucebarryd cryoemstructureofatetramericphotosystemifromchroococcidiopsists821athermophilicunicellularnonheterocystformingcyanobacterium