Cargando…
FAIRSCAPE: a Framework for FAIR and Reproducible Biomedical Analytics
Results of computational analyses require transparent disclosure of their supporting resources, while the analyses themselves often can be very large scale and involve multiple processing steps separated in time. Evidence for the correctness of any analysis should include not only a textual descript...
Autores principales: | Levinson, Maxwell Adam, Niestroy, Justin, Al Manir, Sadnan, Fairchild, Karen, Lake, Douglas E., Moorman, J. Randall, Clark, Timothy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760356/ https://www.ncbi.nlm.nih.gov/pubmed/34264488 http://dx.doi.org/10.1007/s12021-021-09529-4 |
Ejemplares similares
-
Discovery of signatures of fatal neonatal illness in vital signs using highly comparative time-series analysis
por: Niestroy, Justin C., et al.
Publicado: (2022) -
A Surveillance Infrastructure for Malaria Analytics: Provisioning Data Access and Preservation of Interoperability
por: Al Manir, Mohammad Sadnan, et al.
Publicado: (2018) -
Ideal algorithms in healthcare: Explainable, dynamic, precise, autonomous, fair, and reproducible
por: Loftus, Tyler J., et al.
Publicado: (2022) -
Oxygen desaturations in the early neonatal period predict development of bronchopulmonary dysplasia
por: Fairchild, Karen D, et al.
Publicado: (2018) -
Recovery from bradycardia and desaturation events at 32 weeks corrected age and NICU length of stay: an indicator of physiologic resilience?
por: Nagraj, V Peter, et al.
Publicado: (2019)