Cargando…
Learning-to-augment strategy using noisy and denoised data: Improving generalizability of deep CNN for the detection of COVID-19 in X-ray images
Chest X-ray images are used in deep convolutional neural networks for the detection of COVID-19, the greatest human challenge of the 21st century. Robustness to noise and improvement of generalization are the major challenges in designing these networks. In this paper, we introduce a strategy for da...
Autores principales: | Momeny, Mohammad, Neshat, Ali Asghar, Hussain, Mohammad Arafat, Kia, Solmaz, Marhamati, Mahmoud, Jahanbakhshi, Ahmad, Hamarneh, Ghassan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760424/ https://www.ncbi.nlm.nih.gov/pubmed/34352454 http://dx.doi.org/10.1016/j.compbiomed.2021.104704 |
Ejemplares similares
-
Learning-to-augment incorporated noise-robust deep CNN for detection of COVID-19 in noisy X-ray images
por: Akbarimajd, Adel, et al.
Publicado: (2022) -
Active deep learning from a noisy teacher for semi-supervised 3D image segmentation: Application to COVID-19 pneumonia infection in CT
por: Hussain, Mohammad Arafat, et al.
Publicado: (2022) -
A Simple Denoising Algorithm for Real-World Noisy Camera Images
por: Hartbauer, Manfred
Publicado: (2023) -
Images denoising for COVID-19 chest X-ray based on multi-resolution parallel residual CNN
por: Jiang, Xiaoben, et al.
Publicado: (2021) -
The Impact of Artificial Intelligence CNN Based Denoising on FDG PET Radiomics
por: Jaudet, Cyril, et al.
Publicado: (2021)