Cargando…

Identifying patients with atrial fibrillation during sinus rhythm on ECG: Significance of the labeling in the artificial intelligence algorithm

BACKGROUND: This study aimed to increase the knowledge on how to enhance the performance of artificial intelligence (AI)-enabled electrocardiography (ECG) to detect atrial fibrillation (AF) on sinus rhythm ECG (SR-ECG). METHODS: It is a retrospective analysis of a single-center, prospective cohort s...

Descripción completa

Detalles Bibliográficos
Autores principales: Suzuki, Shinya, Motogi, Jun, Nakai, Hiroshi, Matsuzawa, Wataru, Takayanagi, Tsuneo, Umemoto, Takuya, Hirota, Naomi, Hyodo, Akira, Satoh, Keiichi, Otsuka, Takayuki, Arita, Takuto, Yagi, Naoharu, Yamashita, Takeshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760502/
https://www.ncbi.nlm.nih.gov/pubmed/35059494
http://dx.doi.org/10.1016/j.ijcha.2022.100954
Descripción
Sumario:BACKGROUND: This study aimed to increase the knowledge on how to enhance the performance of artificial intelligence (AI)-enabled electrocardiography (ECG) to detect atrial fibrillation (AF) on sinus rhythm ECG (SR-ECG). METHODS: It is a retrospective analysis of a single-center, prospective cohort study (Shinken Database). We developed AI-enabled ECG using SR-ECG to predict AF with a convolutional neural network (CNN). Among new patients in our hospital (n = 19,170), 276 AF label (having ECG on AF [AF-ECG] in the ECG database) and 1896 SR label with following three conditions were identified in the derivation dataset: (1) without structural heart disease, (2) in AF label, SR-ECG was taken within 31 days from AF-ECG, and (3) in SR label, follow-up ≥ 1,095 days. Three patterns of AF label were analyzed by timing of SR-ECG to AF-ECG (before/after/before-or-after, CNN algorithm 1 to 3). The outcome measurement was area under the curve (AUC), sensitivity, specificity, accuracy, and F1 score. As an extra-testing dataset, the performance of AI-enabled ECG was tested in patients with structural heart disease. RESULTS: The AUC of AI-enabled ECG with CNN algorithm 1, 2, and 3 in the derivation dataset was 0.83, 0.88, and 0.86, respectively; when tested in patients with structural heart disease, 0.75, 0.81, and 0.78, respectively. CONCLUSION: We confirmed high performance of AI-enabled ECG to detect AF on SR-ECG in patients without structural heart disease. The performance enhanced especially when SR-ECG after index AF-ECG was included in the algorithm, which was consistent in patients with structural heart disease.