Cargando…
Aristotle: stratified causal discovery for omics data
BACKGROUND: There has been a simultaneous increase in demand and accessibility across genomics, transcriptomics, proteomics and metabolomics data, known as omics data. This has encouraged widespread application of omics data in life sciences, from personalized medicine to the discovery of underlying...
Autores principales: | Mansouri, Mehrdad, Khakabimamaghani, Sahand, Chindelevitch, Leonid, Ester, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760642/ https://www.ncbi.nlm.nih.gov/pubmed/35033007 http://dx.doi.org/10.1186/s12859-021-04521-w |
Ejemplares similares
-
Collaborative intra-tumor heterogeneity detection
por: Khakabimamaghani, Sahand, et al.
Publicado: (2019) -
Assessing statistical significance in causal graphs
por: Chindelevitch, Leonid, et al.
Publicado: (2012) -
Encryptomics: how Aristotle's causality system can be applied to new molecule discovery
por: Junior, Carlos Bloch
Publicado: (2014) -
Correlation set analysis: detecting active regulators in disease populations using prior causal knowledge
por: Huang, Chia-Ling, et al.
Publicado: (2012) -
Uncovering the subtype-specific temporal order of cancer pathway dysregulation
por: Khakabimamaghani, Sahand, et al.
Publicado: (2019)