Cargando…

Volumetric accuracy of different imaging modalities in acute intracerebral hemorrhage

BACKGROUND: Follow-up imaging in intracerebral hemorrhage is not standardized and radiologists rely on different imaging modalities to determine hematoma growth. This study assesses the volumetric accuracy of different imaging modalities (MRI, CT angiography, postcontrast CT) to measure hematoma siz...

Descripción completa

Detalles Bibliográficos
Autores principales: Schlunk, Frieder, Kuthe, Johannes, Harmel, Peter, Audebert, Heinrich, Hanning, Uta, Bohner, Georg, Scheel, Michael, Kleine, Justus, Nawabi, Jawed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760700/
https://www.ncbi.nlm.nih.gov/pubmed/35033012
http://dx.doi.org/10.1186/s12880-022-00735-3
Descripción
Sumario:BACKGROUND: Follow-up imaging in intracerebral hemorrhage is not standardized and radiologists rely on different imaging modalities to determine hematoma growth. This study assesses the volumetric accuracy of different imaging modalities (MRI, CT angiography, postcontrast CT) to measure hematoma size. METHODS: 28 patients with acute spontaneous intracerebral hemorrhage referred to a tertiary stroke center were retrospectively included between 2018 and 2019. Inclusion criteria were (1) spontaneous intracerebral hemorrhage (supra- or infratentorial), (2) noncontrast CT imaging performed on admission, (3) follow-up imaging (CT angiography, postcontrast CT, MRI), and (4) absence of hematoma expansion confirmed by a third cranial image within 6 days. Two independent raters manually measured hematoma volume by drawing a region of interest on axial slices of admission noncontrast CT scans as well as on follow-up imaging (CT angiography, postcontrast CT, MRI) using a semi-automated segmentation tool (Visage image viewer; version 7.1.10). Results were compared using Bland–Altman plots. RESULTS: Mean admission hematoma volume was 18.79 ± 19.86 cc. All interrater and intrarater intraclass correlation coefficients were excellent (1; IQR 0.98–1.00). In comparison to hematoma volume on admission noncontrast CT volumetric measurements were most accurate in patients who received postcontrast CT (bias of − 2.47%, SD 4.67: n = 10), while CT angiography often underestimated hemorrhage volumes (bias of 31.91%, SD 45.54; n = 20). In MRI sequences intracerebral hemorrhage volumes were overestimated in T2* (bias of − 64.37%, SD 21.65; n = 10). FLAIR (bias of 6.05%, SD 35.45; n = 13) and DWI (bias of-14.6%, SD 31.93; n = 12) over- and underestimated hemorrhagic volumes. CONCLUSIONS: Volumetric measurements were most accurate in postcontrast CT while CT angiography and MRI sequences often substantially over- or underestimated hemorrhage volumes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12880-022-00735-3.