Cargando…

Mathematical modeling for COVID-19 transmission dynamics: A case study in Ethiopia

In this paper, we proposed a nonlinear deterministic mathematical model for the transmission dynamics of COVID-19. First, we analyzed the system properties such as boundedness of the solutions, existence of disease-free and endemic equilibria, local and global stability of equilibrium points. Beside...

Descripción completa

Detalles Bibliográficos
Autores principales: Kifle, Zenebe Shiferaw, Obsu, Legesse Lemecha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760842/
https://www.ncbi.nlm.nih.gov/pubmed/35070650
http://dx.doi.org/10.1016/j.rinp.2022.105191
Descripción
Sumario:In this paper, we proposed a nonlinear deterministic mathematical model for the transmission dynamics of COVID-19. First, we analyzed the system properties such as boundedness of the solutions, existence of disease-free and endemic equilibria, local and global stability of equilibrium points. Besides, we computed the basic reproduction number [Formula: see text] and studied its normalized sensitivity for model parameters to identify the most influencing parameter. The local stability of the disease-free equilibrium point is also verified via the help of the Jacobian matrix and Routh Hurwitz criteria. Moreover, the global stability of the disease-free equilibrium point is proved by using the approach of Castillo-Chavez and Song. We also proved the existence of the forward bifurcation using the center manifold theory. Then the model is fitted with COVID-19 infected cases reported from March 13, 2020, to July 31, 2021, in Ethiopia. The values of model parameters are then estimated from the data reported using the least square method together with the fminsearch function in the MATLAB optimization toolbox. Finally, different simulation cases were performed using PYTHON software to compare with analytical results. The simulation results suggest that the spread of COVID-19 can be managed via minimizing the contact rate of infected and increasing the quarantine of exposed individuals.