Cargando…
Humanization of antibodies using a machine learning approach on large-scale repertoire data
MOTIVATION: Monoclonal antibody (mAb) therapeutics are often produced from non-human sources (typically murine), and can therefore generate immunogenic responses in humans. Humanization procedures aim to produce antibody therapeutics that do not elicit an immune response and are safe for human use,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760955/ https://www.ncbi.nlm.nih.gov/pubmed/34110413 http://dx.doi.org/10.1093/bioinformatics/btab434 |
_version_ | 1784633430908076032 |
---|---|
author | Marks, Claire Hummer, Alissa M Chin, Mark Deane, Charlotte M |
author_facet | Marks, Claire Hummer, Alissa M Chin, Mark Deane, Charlotte M |
author_sort | Marks, Claire |
collection | PubMed |
description | MOTIVATION: Monoclonal antibody (mAb) therapeutics are often produced from non-human sources (typically murine), and can therefore generate immunogenic responses in humans. Humanization procedures aim to produce antibody therapeutics that do not elicit an immune response and are safe for human use, without impacting efficacy. Humanization is normally carried out in a largely trial-and-error experimental process. We have built machine learning classifiers that can discriminate between human and non-human antibody variable domain sequences using the large amount of repertoire data now available. RESULTS: Our classifiers consistently outperform the current best-in-class model for distinguishing human from murine sequences, and our output scores exhibit a negative relationship with the experimental immunogenicity of existing antibody therapeutics. We used our classifiers to develop a novel, computational humanization tool, Hu-mAb, that suggests mutations to an input sequence to reduce its immunogenicity. For a set of therapeutic antibodies with known precursor sequences, the mutations suggested by Hu-mAb show substantial overlap with those deduced experimentally. Hu-mAb is therefore an effective replacement for trial-and-error humanization experiments, producing similar results in a fraction of the time. AVAILABILITY AND IMPLEMENTATION: Hu-mAb (humanness scoring and humanization) is freely available to use at opig.stats.ox.ac.uk/webapps/humab. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-8760955 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-87609552022-01-18 Humanization of antibodies using a machine learning approach on large-scale repertoire data Marks, Claire Hummer, Alissa M Chin, Mark Deane, Charlotte M Bioinformatics Original Papers MOTIVATION: Monoclonal antibody (mAb) therapeutics are often produced from non-human sources (typically murine), and can therefore generate immunogenic responses in humans. Humanization procedures aim to produce antibody therapeutics that do not elicit an immune response and are safe for human use, without impacting efficacy. Humanization is normally carried out in a largely trial-and-error experimental process. We have built machine learning classifiers that can discriminate between human and non-human antibody variable domain sequences using the large amount of repertoire data now available. RESULTS: Our classifiers consistently outperform the current best-in-class model for distinguishing human from murine sequences, and our output scores exhibit a negative relationship with the experimental immunogenicity of existing antibody therapeutics. We used our classifiers to develop a novel, computational humanization tool, Hu-mAb, that suggests mutations to an input sequence to reduce its immunogenicity. For a set of therapeutic antibodies with known precursor sequences, the mutations suggested by Hu-mAb show substantial overlap with those deduced experimentally. Hu-mAb is therefore an effective replacement for trial-and-error humanization experiments, producing similar results in a fraction of the time. AVAILABILITY AND IMPLEMENTATION: Hu-mAb (humanness scoring and humanization) is freely available to use at opig.stats.ox.ac.uk/webapps/humab. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2021-06-10 /pmc/articles/PMC8760955/ /pubmed/34110413 http://dx.doi.org/10.1093/bioinformatics/btab434 Text en © The Author(s) 2021. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Marks, Claire Hummer, Alissa M Chin, Mark Deane, Charlotte M Humanization of antibodies using a machine learning approach on large-scale repertoire data |
title | Humanization of antibodies using a machine learning approach on large-scale repertoire data |
title_full | Humanization of antibodies using a machine learning approach on large-scale repertoire data |
title_fullStr | Humanization of antibodies using a machine learning approach on large-scale repertoire data |
title_full_unstemmed | Humanization of antibodies using a machine learning approach on large-scale repertoire data |
title_short | Humanization of antibodies using a machine learning approach on large-scale repertoire data |
title_sort | humanization of antibodies using a machine learning approach on large-scale repertoire data |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760955/ https://www.ncbi.nlm.nih.gov/pubmed/34110413 http://dx.doi.org/10.1093/bioinformatics/btab434 |
work_keys_str_mv | AT marksclaire humanizationofantibodiesusingamachinelearningapproachonlargescalerepertoiredata AT hummeralissam humanizationofantibodiesusingamachinelearningapproachonlargescalerepertoiredata AT chinmark humanizationofantibodiesusingamachinelearningapproachonlargescalerepertoiredata AT deanecharlottem humanizationofantibodiesusingamachinelearningapproachonlargescalerepertoiredata |