Cargando…
Ultrasonography in undergraduate medical education: a comprehensive review and the education program implemented at Jichi Medical University
The concept of point-of-care ultrasound has been widely accepted owing to the development of portable ultrasound systems and growing body of evidence concerning its extensive utility. Thus, it is reasonable to suggest that training to use this modality be included in undergraduate medical education....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761092/ https://www.ncbi.nlm.nih.gov/pubmed/35034230 http://dx.doi.org/10.1007/s10396-021-01178-z |
Sumario: | The concept of point-of-care ultrasound has been widely accepted owing to the development of portable ultrasound systems and growing body of evidence concerning its extensive utility. Thus, it is reasonable to suggest that training to use this modality be included in undergraduate medical education. Training in ultrasonography helps medical students learn basic subjects such as anatomy and physiology, improve their physical examination skills, and acquire diagnostic and procedural skills. Technological advances such as simulators, affordable handheld devices, and tele-ultrasound systems can facilitate undergraduate ultrasound education. Several reports have indicated that some medical schools have integrated ultrasound training into their undergraduate medical curricula. Jichi Medical University in Japan has been providing medical students with ultrasound education to fulfill part of its mission to provide medical care to rural areas. Vertical integration of ultrasound education into a curriculum seems reasonable to ensure skill retention and improvement. However, several issues have hampered the integration of ultrasound into medical education, including a lack of trained faculty, the need to recruit human models, requisition of ultrasound machines for training, and limited curricular space; proposed solutions include peer teaching, students as trained simulated patients, the development of more affordable handheld devices, and a flipped classroom approach with access to an e-learning platform, respectively. A curriculum should be developed through multidisciplinary and bottom-up student-initiated approaches. Formulating national and international consensuses concerning the milestones and curricula can promote the incorporation of ultrasound training into undergraduate medical education at the national level. |
---|