Cargando…
Ins and outs of AlphaFold2 transmembrane protein structure predictions
Transmembrane (TM) proteins are major drug targets, but their structure determination, a prerequisite for rational drug design, remains challenging. Recently, the DeepMind’s AlphaFold2 machine learning method greatly expanded the structural coverage of sequences with high accuracy. Since the employe...
Autores principales: | Hegedűs, Tamás, Geisler, Markus, Lukács, Gergely László, Farkas, Bianka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761152/ https://www.ncbi.nlm.nih.gov/pubmed/35034173 http://dx.doi.org/10.1007/s00018-021-04112-1 |
Ejemplares similares
-
TmAlphaFold database: membrane localization and evaluation of AlphaFold2 predicted alpha-helical transmembrane protein structures
por: Dobson, Laszlo, et al.
Publicado: (2022) -
How AlphaFold2 shaped the structural coverage of the human transmembrane proteome
por: Jambrich, Márton A., et al.
Publicado: (2023) -
AFTM: a database of transmembrane regions in the human proteome predicted by AlphaFold
por: Pei, Jimin, et al.
Publicado: (2023) -
Improving AlphaFold predicted contacts inalpha-helical transmembrane proteins structuresusing structural features
por: Sawhney, Aman, et al.
Publicado: (2023) -
Highly accurate protein structure prediction with AlphaFold
por: Jumper, John, et al.
Publicado: (2021)