Cargando…
Automatic segmentation of head and neck primary tumors on MRI using a multi-view CNN
BACKGROUND : Accurate segmentation of head and neck squamous cell cancer (HNSCC) is important for radiotherapy treatment planning. Manual segmentation of these tumors is time-consuming and vulnerable to inconsistencies between experts, especially in the complex head and neck region. The aim of this...
Autores principales: | Schouten, Jens P.E., Noteboom, Samantha, Martens, Roland M., Mes, Steven W., Leemans, C. René, de Graaf, Pim, Steenwijk, Martijn D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761340/ https://www.ncbi.nlm.nih.gov/pubmed/35033188 http://dx.doi.org/10.1186/s40644-022-00445-7 |
Ejemplares similares
-
Multi-view convolutional neural networks for automated ocular structure and tumor segmentation in retinoblastoma
por: Strijbis, Victor I. J., et al.
Publicado: (2021) -
CNN-Based Quality Assurance for Automatic Segmentation of Breast Cancer in Radiotherapy
por: Chen, Xinyuan, et al.
Publicado: (2020) -
Outcome prediction of head and neck squamous cell carcinoma by MRI radiomic signatures
por: Mes, Steven W., et al.
Publicado: (2020) -
Automatic Detection and Segmentation for Group-Housed Pigs Based on PigMS R-CNN †
por: Tu, Shuqin, et al.
Publicado: (2021) -
Predictive value of quantitative (18)F-FDG-PET radiomics analysis in patients with head and neck squamous cell carcinoma
por: Martens, Roland M., et al.
Publicado: (2020)