Cargando…
Enhancing Robustness of Machine Learning Integration With Routine Laboratory Blood Tests to Predict Inpatient Mortality After Intracerebral Hemorrhage
Objective: The accurate evaluation of outcomes at a personalized level in patients with intracerebral hemorrhage (ICH) is critical clinical implications. This study aims to evaluate how machine learning integrates with routine laboratory tests and electronic health records (EHRs) data to predict inp...
Autores principales: | Chen, Wei, Li, Xiangkui, Ma, Lu, Li, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761736/ https://www.ncbi.nlm.nih.gov/pubmed/35046885 http://dx.doi.org/10.3389/fneur.2021.790682 |
Ejemplares similares
-
Low-Density Lipoprotein Cholesterol and Mortality in Patients With Intracerebral Hemorrhage in Taiwan
por: Wen, Chi-Pang, et al.
Publicado: (2022) -
Therapeutic strategies for intracerebral hemorrhage
por: Li, Zhe, et al.
Publicado: (2022) -
Relationship Between Glycosylated Hemoglobin and Short-Term Mortality of Spontaneous Intracerebral Hemorrhage
por: Lu, Ping, et al.
Publicado: (2021) -
Admission Dehydration Is Associated With Significantly Lower In-Hospital Mortality After Intracerebral Hemorrhage
por: Gao, Bin, et al.
Publicado: (2021) -
Predictors of Early Mortality for Mechanically Ventilated Spontaneous Intracerebral Hemorrhage Patients
por: Reddy, Kati K, et al.
Publicado: (2022)