Cargando…
Synthesis of silver nanoparticles using bio valorization coffee waste extract: photocatalytic flow-rate performance, antibacterial activity, and electrochemical investigation
It is well known that biogenic synthesis, as compared to other processes, has proven to be highly effective in the fabrication of silver nanoparticles (AgNPs). Thus, our current study focused on synthesizing AgNPs using coffee waste extract (CWE). CWE contains many compounds identified by HPLC, whic...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761841/ https://www.ncbi.nlm.nih.gov/pubmed/35070632 http://dx.doi.org/10.1007/s13399-021-02256-5 |
Sumario: | It is well known that biogenic synthesis, as compared to other processes, has proven to be highly effective in the fabrication of silver nanoparticles (AgNPs). Thus, our current study focused on synthesizing AgNPs using coffee waste extract (CWE). CWE contains many compounds identified by HPLC, which reduce, cap, and stabilize AgNPs in its solution. The as-synthesized AgNPs were produced with a monodispersed small size around 20 nm and exhibited in-plane dipole plasmon resonances of hexagonal nanoplates. AgNPs were characterized by both physical and spectroscopic methods, which confirmed their nanoscale dimensions with a hexagonal shape. The as-prepared AgNPs (12 mg) enabled the photodegradation of phenol compounds (20 mL) with a removal efficiency of ~ 94.6% in a short time in the presence of citric acid. Additionally, the second promising application of AgNPs was the tendency to remove the hazard 2,4 dinitroaniline (2,4 DNA) with a percent more than 97% while using only 7 mg of AgNPs. Moreover, the green synthesized AgNPs are superior in inhibiting bacterial growth and killing most infected microbes such as B. subtilis, P. aeruginosa, S. aureus, and E. coli. The electrochemical characteristics of the AgNPs were evaluated using a three-electrode system. The calculated specific capacitance was 280 F g(−1) at 0.56 A g(−1). Furthermore, after 1000 cycles at 2.2 A g(−1), the AgNPs electrode demonstrates an excellent cycling stability behavior with 94.8% capacitance retention. Based on the previous promising results, it can be concluded that CWE is an environmentally benign extract to prepare AgNPs with low cost, saving and easily used for many great domains in photocatalytic, phenol compound removals, and production of functional nanodevices. |
---|