Cargando…
Application of Machine Learning for Cytometry Data
Modern cytometry technologies present opportunities to profile the immune system at a single-cell resolution with more than 50 protein markers, and have been widely used in both research and clinical settings. The number of publicly available cytometry datasets is growing. However, the analysis of c...
Autores principales: | Hu, Zicheng, Bhattacharya, Sanchita, Butte, Atul J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761933/ https://www.ncbi.nlm.nih.gov/pubmed/35046945 http://dx.doi.org/10.3389/fimmu.2021.787574 |
Ejemplares similares
-
A robust and interpretable end-to-end deep learning model for cytometry data
por: Hu, Zicheng, et al.
Publicado: (2020) -
Opportunities and Challenges in Democratizing Immunology Datasets
por: Bhattacharya, Sanchita, et al.
Publicado: (2021) -
Robust prediction of clinical outcomes using cytometry data
por: Hu, Zicheng, et al.
Publicado: (2019) -
Opening clinical trial data: are the voluntary data-sharing portals enough?
por: Geifman, Nophar, et al.
Publicado: (2015) -
Machine learning of flow cytometry data reveals the delayed innate immune responses correlate with the severity of COVID-19
por: Zhu, Jing, et al.
Publicado: (2023)