Cargando…
Automatic Segmentation of Novel Coronavirus Pneumonia Lesions in CT Images Utilizing Deep-Supervised Ensemble Learning Network
Background: The novel coronavirus disease 2019 (COVID-19) has been spread widely in the world, causing a huge threat to the living environment of people. Objective: Under CT imaging, the structure features of COVID-19 lesions are complicated and varied greatly in different cases. To accurately locat...
Autores principales: | Peng, Yuanyuan, Zhang, Zixu, Tu, Hongbin, Li, Xiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761973/ https://www.ncbi.nlm.nih.gov/pubmed/35047520 http://dx.doi.org/10.3389/fmed.2021.755309 |
Ejemplares similares
-
Automatically transferring supervised targets method for segmenting lung lesion regions with CT imaging
por: Du, Peng, et al.
Publicado: (2023) -
Self-Ensembling Co-Training Framework for Semi-Supervised COVID-19 CT Segmentation
Publicado: (2021) -
Deep co-supervision and attention fusion strategy for automatic COVID-19 lung infection segmentation on CT images
por: Hu, Haigen, et al.
Publicado: (2022) -
Deep supervision and atrous inception-based U-Net combining CRF for automatic liver segmentation from CT
por: Lv, Peiqing, et al.
Publicado: (2022) -
Automatic segmentation of nasopharyngeal carcinoma on CT images using efficient UNet‐2.5D ensemble with semi‐supervised pretext task pretraining
por: Domoguen, Jansen Keith L., et al.
Publicado: (2022)