Cargando…
Natural Barcodes for Longitudinal Single Cell Tracking of Leukemic and Immune Cell Dynamics
Blood malignancies provide unique opportunities for longitudinal tracking of disease evolution following therapeutic bottlenecks and for the monitoring of changes in anti-tumor immunity. The expanding development of multi-modal single-cell sequencing technologies affords newer platforms to elucidate...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761982/ https://www.ncbi.nlm.nih.gov/pubmed/35046946 http://dx.doi.org/10.3389/fimmu.2021.788891 |
_version_ | 1784633658990133248 |
---|---|
author | Penter, Livius Gohil, Satyen H. Wu, Catherine J. |
author_facet | Penter, Livius Gohil, Satyen H. Wu, Catherine J. |
author_sort | Penter, Livius |
collection | PubMed |
description | Blood malignancies provide unique opportunities for longitudinal tracking of disease evolution following therapeutic bottlenecks and for the monitoring of changes in anti-tumor immunity. The expanding development of multi-modal single-cell sequencing technologies affords newer platforms to elucidate the mechanisms underlying these processes at unprecedented resolution. Furthermore, the identification of molecular events that can serve as in-vivo barcodes now facilitate the tracking of the trajectories of malignant and of immune cell populations over time within primary human samples, as these permit unambiguous identification of the clonal lineage of cell populations within heterogeneous phenotypes. Here, we provide an overview of the potential for chromosomal copy number changes, somatic nuclear and mitochondrial DNA mutations, single nucleotide polymorphisms, and T and B cell receptor sequences to serve as personal natural barcodes and review technical implementations in single-cell analysis workflows. Applications of these methodologies include the study of acquired therapeutic resistance and the dissection of donor- and host cellular interactions in the context of allogeneic hematopoietic stem cell transplantation. |
format | Online Article Text |
id | pubmed-8761982 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-87619822022-01-18 Natural Barcodes for Longitudinal Single Cell Tracking of Leukemic and Immune Cell Dynamics Penter, Livius Gohil, Satyen H. Wu, Catherine J. Front Immunol Immunology Blood malignancies provide unique opportunities for longitudinal tracking of disease evolution following therapeutic bottlenecks and for the monitoring of changes in anti-tumor immunity. The expanding development of multi-modal single-cell sequencing technologies affords newer platforms to elucidate the mechanisms underlying these processes at unprecedented resolution. Furthermore, the identification of molecular events that can serve as in-vivo barcodes now facilitate the tracking of the trajectories of malignant and of immune cell populations over time within primary human samples, as these permit unambiguous identification of the clonal lineage of cell populations within heterogeneous phenotypes. Here, we provide an overview of the potential for chromosomal copy number changes, somatic nuclear and mitochondrial DNA mutations, single nucleotide polymorphisms, and T and B cell receptor sequences to serve as personal natural barcodes and review technical implementations in single-cell analysis workflows. Applications of these methodologies include the study of acquired therapeutic resistance and the dissection of donor- and host cellular interactions in the context of allogeneic hematopoietic stem cell transplantation. Frontiers Media S.A. 2022-01-03 /pmc/articles/PMC8761982/ /pubmed/35046946 http://dx.doi.org/10.3389/fimmu.2021.788891 Text en Copyright © 2022 Penter, Gohil and Wu https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Penter, Livius Gohil, Satyen H. Wu, Catherine J. Natural Barcodes for Longitudinal Single Cell Tracking of Leukemic and Immune Cell Dynamics |
title | Natural Barcodes for Longitudinal Single Cell Tracking of Leukemic and Immune Cell Dynamics |
title_full | Natural Barcodes for Longitudinal Single Cell Tracking of Leukemic and Immune Cell Dynamics |
title_fullStr | Natural Barcodes for Longitudinal Single Cell Tracking of Leukemic and Immune Cell Dynamics |
title_full_unstemmed | Natural Barcodes for Longitudinal Single Cell Tracking of Leukemic and Immune Cell Dynamics |
title_short | Natural Barcodes for Longitudinal Single Cell Tracking of Leukemic and Immune Cell Dynamics |
title_sort | natural barcodes for longitudinal single cell tracking of leukemic and immune cell dynamics |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761982/ https://www.ncbi.nlm.nih.gov/pubmed/35046946 http://dx.doi.org/10.3389/fimmu.2021.788891 |
work_keys_str_mv | AT penterlivius naturalbarcodesforlongitudinalsinglecelltrackingofleukemicandimmunecelldynamics AT gohilsatyenh naturalbarcodesforlongitudinalsinglecelltrackingofleukemicandimmunecelldynamics AT wucatherinej naturalbarcodesforlongitudinalsinglecelltrackingofleukemicandimmunecelldynamics |