Cargando…
Deep Learning Based Superconducting Radio-Frequency Cavity Fault Classification at Jefferson Laboratory
This work investigates the efficacy of deep learning (DL) for classifying C100 superconducting radio-frequency (SRF) cavity faults in the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. CEBAF is a large, high-power continuous wave recirculating linac that utilizes 418 SRF cav...
Autores principales: | Vidyaratne, Lasitha, Carpenter, Adam, Powers, Tom, Tennant, Chris, Iftekharuddin, Khan M., Rahman, Md Monibor, Shabalina, Anna S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762208/ https://www.ncbi.nlm.nih.gov/pubmed/35047766 http://dx.doi.org/10.3389/frai.2021.718950 |
Ejemplares similares
-
Context aware deep learning for brain tumor segmentation, subtype classification, and survival prediction using radiology images
por: Pei, Linmin, et al.
Publicado: (2020) -
Vovel metrics—novel coupling metrics for improved software fault prediction
por: Muhammad, Rizwan, et al.
Publicado: (2021) -
A deep learning method for the recognition of solar radio burst spectrum
por: Guo, Jun-Cheng, et al.
Publicado: (2022) -
Inheritance metrics feats in unsupervised learning to classify unlabeled datasets and clusters in fault prediction
por: Aziz, Syed Rashid, et al.
Publicado: (2021) -
Toward fault tolerant modelling for SCADA based electricity distribution networks, machine learning approach
por: Masri, Aladdin, et al.
Publicado: (2021)