Cargando…
Development and Validation of a Bioanalytical UHPLC-MS/MS Method Applied to Murine Liver Tissue for the Determination of Indocyanine Green Loaded in H-Ferritin Nanoparticles
Indocyanine green (ICG) is one of the most commonly used fluorophores in near-infrared fluorescence-guided techniques. However, the molecule is prone to form aggregates in saline solution with a limited photostability and a moderate fluorescence yield. ICG was thus formulated using protein-based nan...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762227/ https://www.ncbi.nlm.nih.gov/pubmed/35047479 http://dx.doi.org/10.3389/fchem.2021.784123 |
Sumario: | Indocyanine green (ICG) is one of the most commonly used fluorophores in near-infrared fluorescence-guided techniques. However, the molecule is prone to form aggregates in saline solution with a limited photostability and a moderate fluorescence yield. ICG was thus formulated using protein-based nanoparticles of H-ferritin (HFn) in order to generate a new nanostructure, HFn-ICG. In this study, an ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) system was employed to develop and validate the quantitative analysis of ICG in liver tissue samples from HFn-ICG-treated mice. To precipitate HFn, cold acetone in acidic solution at pH 5.0 was used. The processed liver samples were injected into the UHPLC-MS/MS system for analysis using the positive electrospray ionization mode. Chromatographic separation was achieved on a Waters Acquity UPLC(®) HSS T3 Column (1.8 μm, 2.1 × 100 mm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. The selected reaction monitoring transitions of [Formula: see text] 753 [Formula: see text] 330 and [Formula: see text] 827 [Formula: see text] 330 were applied for ICG and IR-820 (the internal standard, IS), respectively. The method was selective and linear over a concentration range of 50–1,500 ng/ml. The method was validated for sensitivity, accuracy, precision, extraction recovery, matrix effect, and stability in liver tissue homogenates. ICG extraction recoveries ranged between 85 and 108%. The intra- and inter-day precisions were less than 6.28%. The method was applied to a bio-distribution study to compare the amount of ICG levels from mice treated with HFn-ICG and free ICG. The analyses of the homogenate samples from the two types of treatment showed that the concentration levels of ICG is approximately six-fold higher than those of free ICG (1,411 ± 7.62 ng/ml vs. 235 ± 26.0 ng/ml) at 2 h post injection. |
---|