Cargando…

Backbone Torsion Angle Determination Using Proton Detected Magic-Angle Spinning Nuclear Magnetic Resonance

[Image: see text] Protein torsion angles define the backbone secondary structure of proteins. Magic-angle spinning (MAS) NMR methods using carbon detection have been developed to measure torsion angles by determining the relative orientation between two anisotropic interactions—dipolar coupling or c...

Descripción completa

Detalles Bibliográficos
Autores principales: Xue, Kai, Nimerovsky, Evgeny, Tekwani Movellan, Kumar A., Becker, Stefan, Andreas, Loren B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762656/
https://www.ncbi.nlm.nih.gov/pubmed/34957837
http://dx.doi.org/10.1021/acs.jpclett.1c03267
_version_ 1784633808471982080
author Xue, Kai
Nimerovsky, Evgeny
Tekwani Movellan, Kumar A.
Becker, Stefan
Andreas, Loren B.
author_facet Xue, Kai
Nimerovsky, Evgeny
Tekwani Movellan, Kumar A.
Becker, Stefan
Andreas, Loren B.
author_sort Xue, Kai
collection PubMed
description [Image: see text] Protein torsion angles define the backbone secondary structure of proteins. Magic-angle spinning (MAS) NMR methods using carbon detection have been developed to measure torsion angles by determining the relative orientation between two anisotropic interactions—dipolar coupling or chemical shift anisotropy. Here we report a new proton-detection based method to determine the backbone torsion angle by recoupling NH and CH dipolar couplings within the HCANH pulse sequence, for protonated or partly deuterated samples. We demonstrate the efficiency and precision of the method with microcrystalline chicken α spectrin SH3 protein and the influenza A matrix 2 (M2) membrane protein, using 55 or 90 kHz MAS. For M2, pseudo-4D data detect a turn between transmembrane and amphipathic helices.
format Online
Article
Text
id pubmed-8762656
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-87626562022-01-18 Backbone Torsion Angle Determination Using Proton Detected Magic-Angle Spinning Nuclear Magnetic Resonance Xue, Kai Nimerovsky, Evgeny Tekwani Movellan, Kumar A. Becker, Stefan Andreas, Loren B. J Phys Chem Lett [Image: see text] Protein torsion angles define the backbone secondary structure of proteins. Magic-angle spinning (MAS) NMR methods using carbon detection have been developed to measure torsion angles by determining the relative orientation between two anisotropic interactions—dipolar coupling or chemical shift anisotropy. Here we report a new proton-detection based method to determine the backbone torsion angle by recoupling NH and CH dipolar couplings within the HCANH pulse sequence, for protonated or partly deuterated samples. We demonstrate the efficiency and precision of the method with microcrystalline chicken α spectrin SH3 protein and the influenza A matrix 2 (M2) membrane protein, using 55 or 90 kHz MAS. For M2, pseudo-4D data detect a turn between transmembrane and amphipathic helices. American Chemical Society 2021-12-27 2022-01-13 /pmc/articles/PMC8762656/ /pubmed/34957837 http://dx.doi.org/10.1021/acs.jpclett.1c03267 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Xue, Kai
Nimerovsky, Evgeny
Tekwani Movellan, Kumar A.
Becker, Stefan
Andreas, Loren B.
Backbone Torsion Angle Determination Using Proton Detected Magic-Angle Spinning Nuclear Magnetic Resonance
title Backbone Torsion Angle Determination Using Proton Detected Magic-Angle Spinning Nuclear Magnetic Resonance
title_full Backbone Torsion Angle Determination Using Proton Detected Magic-Angle Spinning Nuclear Magnetic Resonance
title_fullStr Backbone Torsion Angle Determination Using Proton Detected Magic-Angle Spinning Nuclear Magnetic Resonance
title_full_unstemmed Backbone Torsion Angle Determination Using Proton Detected Magic-Angle Spinning Nuclear Magnetic Resonance
title_short Backbone Torsion Angle Determination Using Proton Detected Magic-Angle Spinning Nuclear Magnetic Resonance
title_sort backbone torsion angle determination using proton detected magic-angle spinning nuclear magnetic resonance
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762656/
https://www.ncbi.nlm.nih.gov/pubmed/34957837
http://dx.doi.org/10.1021/acs.jpclett.1c03267
work_keys_str_mv AT xuekai backbonetorsionangledeterminationusingprotondetectedmagicanglespinningnuclearmagneticresonance
AT nimerovskyevgeny backbonetorsionangledeterminationusingprotondetectedmagicanglespinningnuclearmagneticresonance
AT tekwanimovellankumara backbonetorsionangledeterminationusingprotondetectedmagicanglespinningnuclearmagneticresonance
AT beckerstefan backbonetorsionangledeterminationusingprotondetectedmagicanglespinningnuclearmagneticresonance
AT andreaslorenb backbonetorsionangledeterminationusingprotondetectedmagicanglespinningnuclearmagneticresonance