Cargando…

Design of Coibamide A Mimetics with Improved Cellular Bioactivity

[Image: see text] Coibamide A, a cyclic depsipeptide isolated from a Panamanian marine cyanobacterium, shows potent cytotoxic activity via the inhibition of the Sec61 translocon. We designed a coibamide A mimetic in which the ester linkage between MeThr and d-MeAla in coibamide A was replaced with a...

Descripción completa

Detalles Bibliográficos
Autores principales: Kitamura, Takashi, Suzuki, Rikito, Inuki, Shinsuke, Ohno, Hiroaki, McPhail, Kerry L., Oishi, Shinya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762706/
https://www.ncbi.nlm.nih.gov/pubmed/35059129
http://dx.doi.org/10.1021/acsmedchemlett.1c00591
Descripción
Sumario:[Image: see text] Coibamide A, a cyclic depsipeptide isolated from a Panamanian marine cyanobacterium, shows potent cytotoxic activity via the inhibition of the Sec61 translocon. We designed a coibamide A mimetic in which the ester linkage between MeThr and d-MeAla in coibamide A was replaced with an alkyl linker to provide a stable macrocyclic scaffold possessing a MeLys(Me) residue. Taking advantage of a facile solid-phase synthetic approach, an structure–activity relationship (SAR) study of the newly designed macrocyclic structure was performed, with a focus on altering the pattern of N-methyl substitution and amino acid configurations. Overall, the simplified macrocyclic scaffold with an alkyl linker resulted in a significantly reduced cytotoxicity. Instead, more potent coibamide A derivatives with a β-(4-biphenylyl)alanine (Bph) group were identified after the optimization of the Tyr(Me) position in the original macrocyclic scaffold of coibamide A based on the characteristic apratoxin A substructures. The similar SAR between coibamide A and apratoxin A suggests that the binding site of the Tyr(Me) side chain at the luminal end of Sec61α may be shared.