Cargando…
Integrating Incompatible Assay Data Sets with Deep Preference Learning
[Image: see text] A large amount of bioactivity assay data is already accumulated in public databases, but the integration of these data sets for quantitative structure–activity relationship (QSAR) studies is not straightforward due to differences in experimental methods and settings. We present an...
Autores principales: | Sun, Xiaolin, Tamura, Ryo, Sumita, Masato, Mori, Kenichi, Terayama, Kei, Tsuda, Koji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762726/ https://www.ncbi.nlm.nih.gov/pubmed/35047110 http://dx.doi.org/10.1021/acsmedchemlett.1c00439 |
Ejemplares similares
-
QCforever: A Quantum
Chemistry Wrapper for Everyone
to Use in Black-Box Optimization
por: Sumita, Masato, et al.
Publicado: (2022) -
Understanding the evolution of a de novo molecule generator via characteristic functional group monitoring
por: Fujita, Takehiro, et al.
Publicado: (2022) -
Pushing property limits in materials discovery via boundless objective-free exploration
por: Terayama, Kei, et al.
Publicado: (2020) -
De novo creation of a naked eye–detectable fluorescent molecule based on quantum chemical computation and machine learning
por: Sumita, Masato, et al.
Publicado: (2022) -
NMR-TS: de novo molecule identification from NMR spectra
por: Zhang, Jinzhe, et al.
Publicado: (2020)