Cargando…
scAnnotatR: framework to accurately classify cell types in single-cell RNA-sequencing data
BACKGROUND: Automatic cell type identification is essential to alleviate a key bottleneck in scRNA-seq data analysis. While most existing classification tools show good sensitivity and specificity, they often fail to adequately not-classify cells that are missing in the used reference. Additionally,...
Autores principales: | Nguyen, Vy, Griss, Johannes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762856/ https://www.ncbi.nlm.nih.gov/pubmed/35038984 http://dx.doi.org/10.1186/s12859-022-04574-5 |
Ejemplares similares
-
Interactive, annotatable, code-driven presentations
por: Rao, Achintya
Publicado: (2017) -
scQCEA: a framework for annotation and quality control report of single-cell RNA-sequencing data
por: Nassiri, Isar, et al.
Publicado: (2023) -
scATAC-pro: a comprehensive workbench for single-cell chromatin accessibility sequencing data
por: Yu, Wenbao, et al.
Publicado: (2020) -
scMuffin: an R package to disentangle solid tumor heterogeneity by single-cell gene expression analysis
por: Nale, Valentina, et al.
Publicado: (2023) -
scHaplotyper: haplotype construction and visualization for genetic diagnosis using single cell DNA sequencing data
por: Yan, Zhiqiang, et al.
Publicado: (2020)