Cargando…
Deep Learning Algorithm Trained on Brain Magnetic Resonance Images and Clinical Data to Predict Motor Outcomes of Patients With Corona Radiata Infarct
The early and accurate prediction of the extent of long-term motor recovery is important for establishing specific rehabilitation strategies for stroke patients. Using clinical parameters and brain magnetic resonance images as inputs, we developed a deep learning algorithm to increase the prediction...
Autores principales: | Kim, Jeoung Kun, Chang, Min Cheol, Park, Donghwi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763312/ https://www.ncbi.nlm.nih.gov/pubmed/35046770 http://dx.doi.org/10.3389/fnins.2021.795553 |
Ejemplares similares
-
Prediction of ambulatory outcome in patients with corona radiata infarction using deep learning
por: Kim, Jeoung Kun, et al.
Publicado: (2021) -
Diffusion-Tensor Magnetic Resonance Imaging for Hand and Foot Fibers Location at the Corona Radiata: Comparison with Two Lesion Studies
por: Lee, Dong-Hoon, et al.
Publicado: (2014) -
Early detection of secondary damage in ipsilateral thalamus after acute infarction at unilateral corona radiata by diffusion tensor imaging and magnetic resonance spectroscopy
por: Li, Chuo, et al.
Publicado: (2011) -
Capsular warning syndrome—a case of atrial fibrillation and corona radiata infarct
por: Tan, Sarah En Mei, et al.
Publicado: (2023) -
Deep Learning Algorithm Trained on Cervical Magnetic Resonance Imaging to Predict Outcomes of Transforaminal Epidural Steroid Injection for Radicular Pain from Cervical Foraminal Stenosis
por: Wang, Ming Xing, et al.
Publicado: (2023)